

2025 Integrated Resource Plan Technical Advisory Committee Fall 2024 – Meeting 2

To request accessible formats visit hydro.mb.ca/accessibility.

Land acknowledgment

Manitoba Hydro has a presence right across Manitoba – on Treaty 1, Treaty 2, Treaty 3, Treaty 4 and Treaty 5 lands – the original territories of the Anishinaabe, Cree, Anishininew, Dakota, and Dene peoples and the homeland of the Red River Métis.

We acknowledge these lands and pay our respects to the ancestors of these territories. The legacy of the past remains a strong influence on Manitoba Hydro's relationships with Indigenous communities today, and we remain committed to establishing and maintaining strong, mutually beneficial relationships with Indigenous communities.

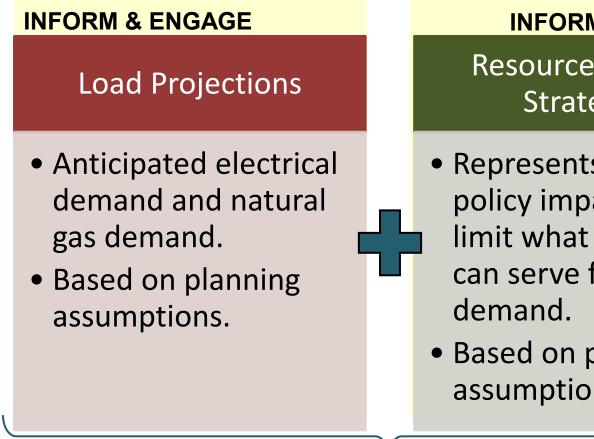
Agenda

Purpose: Seek member feedback on planning assumptions that inform key inputs

Topics

- 1. Updates from TAC meeting #1
- 2. Terms of Reference Updates
- 3. 2025 IRP Proposed Load Projections
 - Development Approach
 - Load Projections
 - Planning Assumptions
- 4. Resource Inventory & Proposed Resource Option Strategies

A note about information included in this document


All information included in this documented is presented as proposed, draft, and/or preliminary. Discussion and feedback is welcomed to inform finalized versions of this information.

Manitoba Hydro is committed to continuing to ensure transparency of our energy planning process. This includes engaging with customers and interested parties in the development of the IRP, so it is informed by feedback heard.

Finalized key inputs, scenarios, and evaluation metrics will be communicated after the planned engagement concludes, including how feedback was incorporated.

Load Projections and Resource Options

For today's conversation

Key Inputs

INFORM

Resource Options Strategies

- Represents potential policy impacts that limit what resources can serve future
- Based on planning assumptions.

Scenarios

- Represents a specific energy future.
- It is a likely combination of a Load Projection and a **Resource Options** Strategy.

Updates from TAC Meeting #1

Engagement in the 2025 IRP

Public Participation Spectrum

INCREASING IMPACT ON THE DECISION

Terms of Reference - Updates

Proposed changes based on discussion

Purpose

What we heard:	Proposed Changes
 of members: Are representative or independent perspectives sought. Impacts demands of group members. Group members to provide engagement feedback that Hydro will use to inform decision-making. Group members will not be required to reach consensus or make formal recommendations. 	The 2025 IRP will result in a road map, which includes a recommended development plan, be-informed by TAC feedback and other public-engagement feedback. The TAC is intended to provide designed to gather feedback from representative organizations across Manitoba, with members sharing their knowledge and expertise from their role(s) within the organization the group-they represent. Feedback shared from the TAC will be considered by Manitoba Hydro along with feedback heard through other 2025 IRP engagement. The TAC will not be required to reach consensus and will not be responsible or accountable for decisions or determining a recommended development plan within the 2025 IRP. Participation on the TAC is an engagement effort and is not considered Crown Consultation.

Purpose

What we heard:	Proposed Changes
 Need to clarify TAC purpose & expectations of members: Are representative or independent perspectives sought. Impacts demands of group members. Group members to provide engagement feedback that Hydro will use to inform decision-making. Group members will not be required to reach consensus or make formal recommendations. Participation of members is considered engagement - not Crown consultation. 	The TAC will bring together a range of perspectives and foster comprehensive dialogue on various components of the 2025 IRP. <u>Consultation Engagement</u> with the TAC is one part of province-wide engagement to seek feedback more broadly with the public, customers and interested parties in Manitoba.

Membership Criteria

What we heard:

- It's important to clarify if group members are bringing their individual expertise or a collective perspective from their organization.
- Consider how participants' organizations may be impacted by Manitoba Hydro's energy planning.
- "Aids" should be changed to "impacts".

Proposed Changes

TAC membership includes a cross-section of knowledgeable participants that have significant interest or experience with Manitoba Hydro's Integrated Resource Planning processes. Specifically, membership is chosen considering the following criteria:

- Can bring a representative or collective perspective to the discussion.
- Have a broad focus and interest (based on **the organization's** mandate or research) on long-term energy planning, or knowledge of key factors that could influence energy use in Manitoba.
- Having Have an understanding of how Manitoba Hydro's long-term energy planning aids and/or impacts their organization's mandate and objectives.
- Have a demonstrated interest in Manitoba Hydro's long-term energy planning through involvement in previous Manitoba Hydro IRPs by and/or Public Utilities Board processes.

Responsibilities of Membership and Group Protocols

What we heard	Proposed Changes
The level of expectation around	• Members are expected asked to attend all scheduled meetings to ensure
participation and alternates should be	consistent participation and build the team. If unable to attend,
clarified.	members should may provide an alternate attendee and brief them
	share previous discussions and TAC materials with the alternate.
• It should be clarified if this is a	• To support the discussion, Manitoba Hydro may provide materials in
requirement or if relevant materials will	advance of the meetings. Members should take time are encouraged to
be reviews in the meetings.	review this materials provided in advance to enable active participation
	in discussions.
• This bullet should be split into two parts.	• Members should are encouraged to actively and respectfully participate
The first part should focus on a two-way	in discussions and must communicate respectfully, enabling a two-way
dialogue, the second should focus on	dialogue. Not all members may be able to participate in every
creation of a safe space to share those	discussion.
perspectives.	• Members should strive for a welcoming and inclusive environment for
	diverse perspectives.

Responsibilities of Membership and Group Protocols

What we heard	Pr	oposed Changes
• It's important to clarify	•	Each member of the Committee TAC shall conduct themselves honestly, fairly, ethically
if group members are		and with integrity and be respectful of one another, Manitoba Hydro staff and group
bringing their		facilitators. Potential conflicts of interest must be identified reported to the Chair and
individual expertise or		will be disclosed to the <mark>group</mark> TAC.
a collective	•	Clarified under group purpose section: Each member must bring the perspectives of the
perspective from their		organization or sector they are representing and commit to sharing back to the
organization.		organization they represent. All members are required to be respectful of other TAC
		members and perspectives raised throughout the process.
	•	Consultants of the Public Utilities Board are participating as observers. While they may
		provide guidance on the scope of matters to be included in the IRP, they will not
		provide substantive advice or recommendations on how Manitoba Hydro should meets
		its resource needs.

Responsibilities of Manitoba Hydro

What we heard	Proposed Changes
Important to clarify what "where	 Review the feedback from by TAC members and be
appropriate" means. In what	accountable to share back what was heard, what we did
situations would feedback not be	and the rationale.be accountable to share back how it was
considered appropriate?	considered within the IRP where appropriate. For example,
	feedback may be considered in the IRP or other Manitoba
	Hydro work.
Post all TAC meeting materials and	 Post all TAC meeting materials, presentations, and external
presentations to the Manitoba	meeting notes to the Manitoba Hydro public website.
Hydro public website.	Materials will not attribute comments to individual TAC
	members or the organizations they represent.

Responsibilities of Manitoba Hydro

What we heard	Proposed Changes		
Include the same	Added:		
conduct responsibilities for Manitoba Hydro that are in the member section.	 Actively participate in discussions and must communicate respectfully, enabling a two-way dialogue. Ensure a welcoming and inclusive environment for diverse perspectives. Conduct themselves honestly, fairly, ethically and with integrity and be respectful of one another, TAC Members, other Manitoba Hydro staff and group facilitators. Potential conflicts of interest must be identified to the group. Be respectful of other TAC members and perspectives raised throughout the process. 		

Committee Feedback

What we heard	Proposed Changes
Clarify what is	Move to "Member Responsibilities" section:
meant by the	TAC membership members are invited to formally communicate
term "formally"	provide feedback during the scheduled meetings. If TAC members
	would like feedback specifically noted in meeting notes, please advise
	Manitoba Hydro either during the meeting or by email at
	IRP@hydro.mb.ca. Additional feedback may also be provided by
	emailany feedback or recommendations for Manitoba Hydro to
	review so it can be documented in the meeting notes.

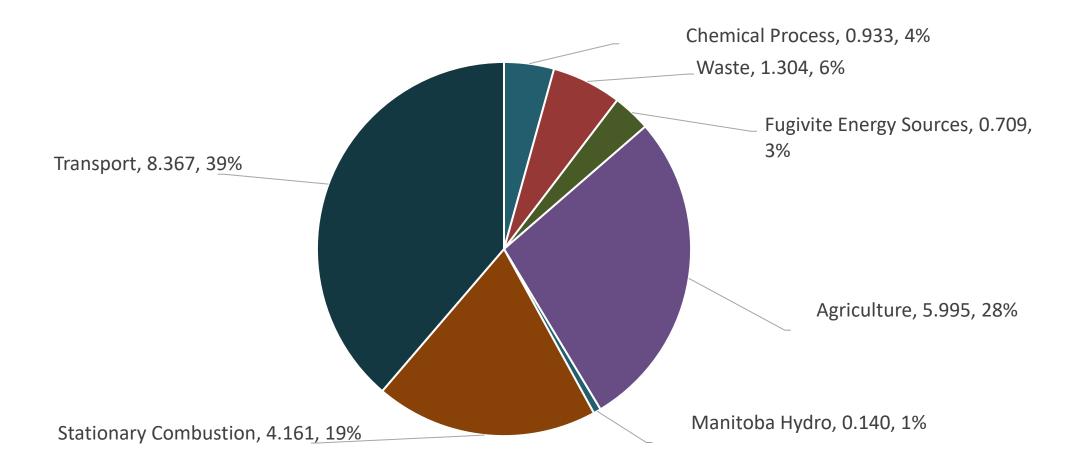
INFORM

Proposed Load Projections

Guiding Principles and Development Approach

Guiding Principles for the 2025 IRP Load Projections

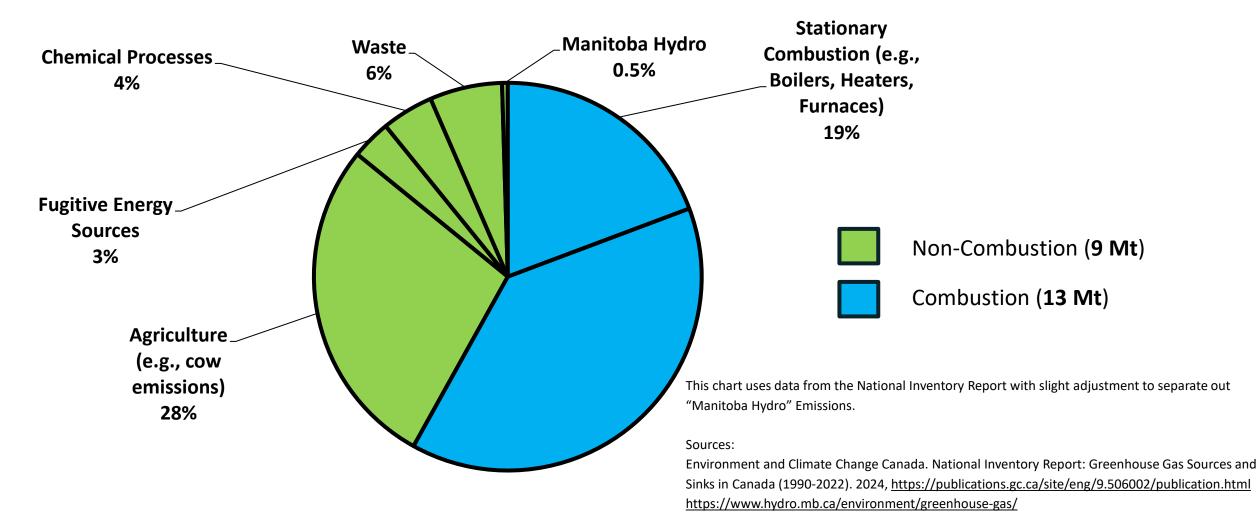
- Capture a **broad range of potential futures** for both electricity and natural gas.
- Leverage key learnings from 2023 IRP in developing planning assumptions for each load projection.
- Limit the premature removal of existing systems that have not reached end of life.
- Develop a **baseline projection** with limited changes to how Manitobans use electricity and natural gas.
- Ensure two load projections support achieving a net-zero economy by 2050, highlighting different pathways to a net-zero economy by 2050.


Assumptions to Achieve a Net-Zero Economy in Manitoba

Assumed that a net-zero economy by 2050 in Manitoba will...

- 1. Have **lower fossil fuel** use than current levels.
- 2. Have **lower non-combustion emissions** than current levels.
- 3. Rely on Manitoba produced biofuels and hydrogen.
- 4. Rely on Manitoba based offsets and CO₂ removals.
- 5. Net **any remaining** fossil fuel combustion emissions, and non-combustion emissions, to zero in 2050.

Manitoba Greenhouse Gas Emissions


Average Manitoban GHG Emissions Between 2018 - 2022 (21.6 Mt per year)

2025 IRP Round 1 Engagement – TAC Meeting #2

Further descriptions of the categories and subcategories found in Table A9-1 in the <u>NIR Part 3</u> https://publications.gc.ca/collections/collection_2024/eccc/En81-4-2022-3-eng.pdf

Economy Wide Emissions That Would Need To Be Netted To Zero Manitoba Emissions (2018-2022 average)

Reducing Fossil Fuel Emissions Impacts Loads

GHG Reduction Option	Impact on Electrical Load	Impact on Natural Gas Load
1. Energy Efficiency (e.g., insulation)	Decrease 🗸	Decrease 🗸
2. Electrification	Increase	Decrease 🗸
3. Alternative Fuels (e.g., H ₂)	Increase	Decrease 🗸
4a. Bioenergy with Carbon Capture & Storage (BECCS)	Decrease	Neutral
4b. Other CO ₂ Removal (e.g., Negative Emission) Technologies	Increase	Neutral

Note: Options #1, #3 (and usually #2) do not reduce non-combustion emissions

Proposed Load Projections & Planning Assumptions

- Load projections show the energy demand Manitoba Hydro might be required to serve.
- Planning assumptions are common between electricity and natural gas.
- The net-zero economy by 2050 future is uncertain and could result in a range of electricity and natural gas demand that needs to be served by Manitoba Hydro.
- Three proposed load projections:

Baseline Load Projection

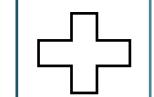
Assumes minimal changes from current policies and customer decisions.

Medium Load Projection

Assumes moderate impact from government actions and customer decisions and achieves economy wide netzero by 2050.

High Load Projection

Assumes significant impact from government actions and customer decisions and achieves economy wide netzero by 2050.


Key Planning Assumptions

Baseline	Medium	High
Assume slightly lower economic growth	 Assume average economic growth 	 Assume slightly higher economic growth
Assume natural gas remains a viable option for Manitobans	 Strategically use natural gas to mitigate peak load implications 	 Restricting the use of natural gas
 Limited industrial economic development and decarbonization by way of electrification 	 Assume medium levels of industrial economic growth and decarbonization by way of electrification 	 Assume higher levels of industrial economic growth and decarbonization by way of electrification
No use of negative emissions technologies	 Achieve economy wide net- zero by 2050 with the use of negative emission technologies 	 Achieve economy wide net- zero by 2050 with the use of negative emission technologies

Methodology for the 2025 IRP Load Projections

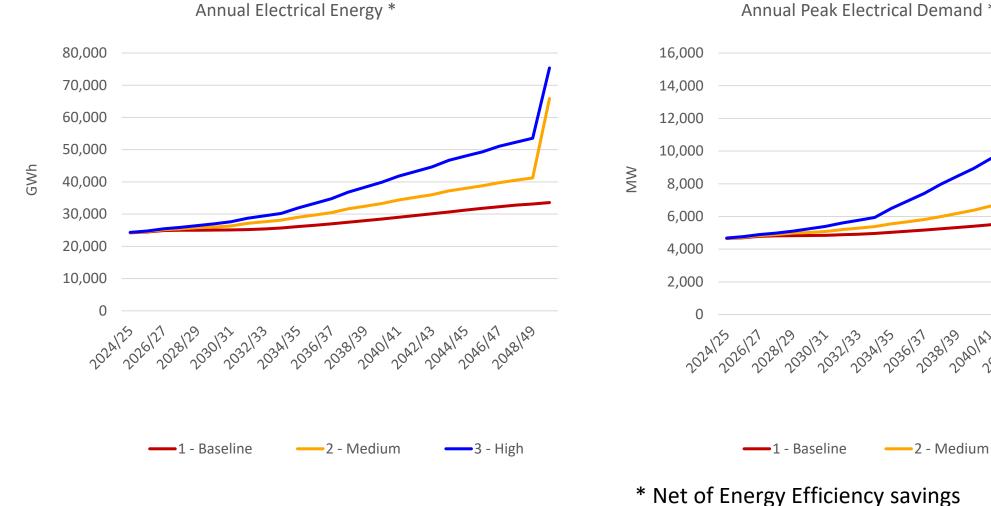
Key Planning Assumptions

- Key Assumptions that have the potential of changing how customers use energy into the future
- Include emerging technologies where models leveraging historical information may not capture

Load Forecast Modelling

- Economic Inputs from external Economic Forecasters
- Industry Standard Forecast Models by Customer Sector
- Hourly Zonal Forecasts developed
- Peak Forecasts based on Hourly Models

- IRP Electric Load Projection
- IRP Natural Gas Volume Projection



ENGAGE

Proposed Load Projections

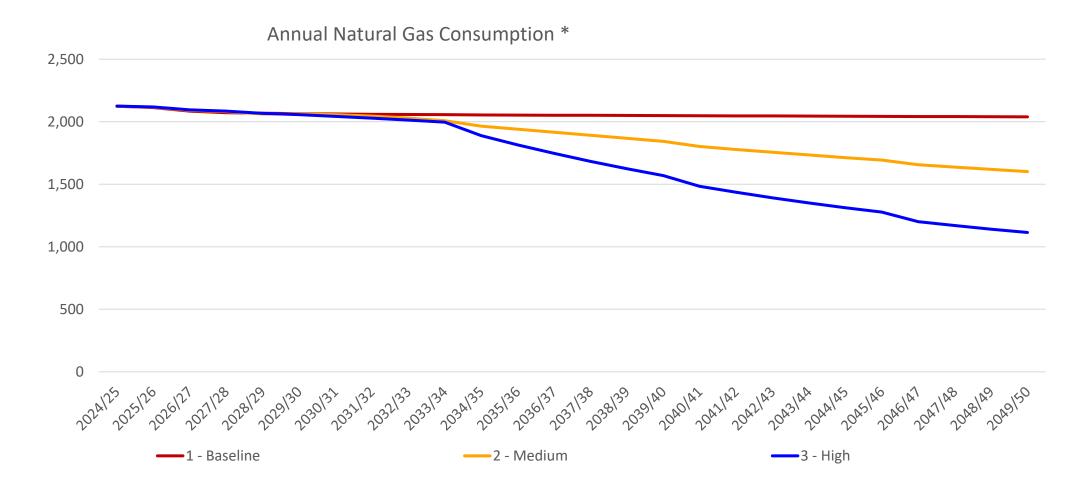
Including Planning Assumptions

Electrical Energy and Peak Demand

Annual Peak Electrical Demand *

2025 IRP Round 1 Engagement – TAC Meeting #2

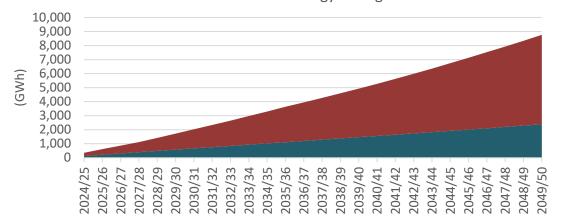
204.4145

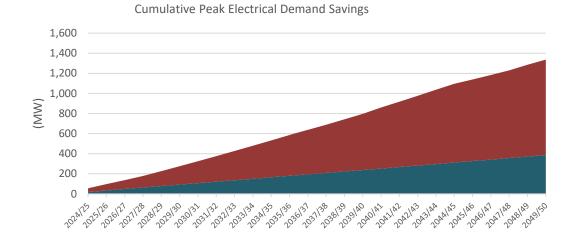

2040142042143

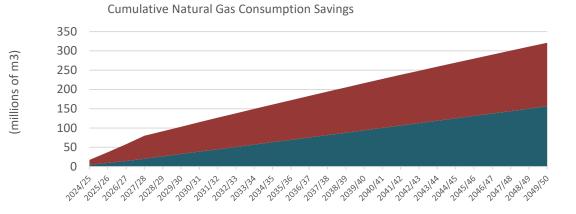
2046147

-3 - High

2048/49




2025 IRP Round 1 Engagement – TAC Meeting #2


* Net of Energy Efficiency savings

Energy Efficiency

Cumulative Electrical Energy Savings

Note: Natural gas savings in the Medium and High Load projections have been adjusted to reflect the reduced natural gas volumes included in the Medium and High Load projections

Codes & Standards
Programs Based DSM

Planning Assumptions

We are looking for your feedback:

- To make sure we have captured a broad enough range in our load projections.
- To understand the factors that could impact the load projections.
- Key Planning Assumptions 5 Breakout Discussions:
 - Electrification of Transportation
 - Space Heating
 - Industrial Decarbonization / Economic Development
 - Customer Self-Generation / Storage
 - Direct Air Carbon Capture

Explore key planning assumptions at each station:

- What does [key planning assumption] look like in Manitoba leading up to 2050?
- What factors might influence [key planning assumption] in Manitoba?
- Are there any obstacles/barriers that could influence [key planning assumption]?
- Are there other factors we should be considering for [key planning assumption]?

Are there other planning assumptions you would like to provide feedback on?

Proposed Planning Assumptions

Economic growth

Energy Policy (incl. GHG policy)

Electrification of Transportation

Space Heating (electrification, ASHP, GSHP, energy efficiency)

Customer Self-Generation & Storage (e.g. solar)

Energy Efficiency

Industrial Decarbonization

Industrial Economic Development

Hydrogen Production

CO₂ Capture

Biofuels & Hydrogen

Demand Response

1-Baseline Load Projection assumes minimal changes from current policies and customer decisions.		2-Medium Load Projection assumes moderate impact from government actions and customer decisions.			3-High Load Projection assumes significant impact from government actions and customer decisions.			
Low	Med	High	Low	Med	High	Low	Med	High
				-			-	

Lower electricity demand

Higher electricity demand

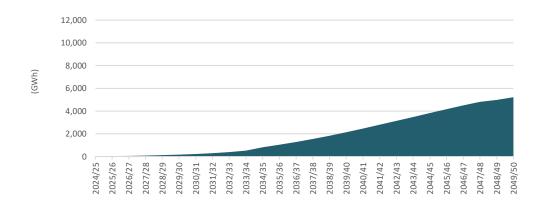
Electrification of Transportation

Zero-emission vehicle sales assumptions

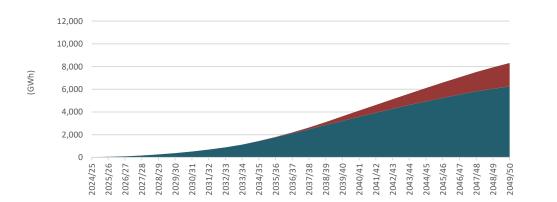
	Baseline		Medium		High	
Туре	2034/35	2049/50	2034/35	2049/50	2034/35	2049/50
Passenger Cars	100%	100%	100%	100%	100%	100%
Light Trucks	100%	100%	100%	100%	100%	100%
Medium	25%	80%	25%	90%	25%	100%
Heavy	10%	50%	18%	75%	25%	100%
Buses	40%	100%	40%	100%	40%	100%

To produce hydrogen through electrolysis, over twice the amount of electricity is required for the same level of km driven

Medium and High Load Projections include the introduction of Hydrogen vehicles starting in 2034/35

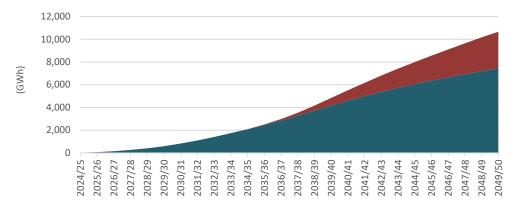

Overall projections include:

- Electricity required to charge electric vehicles
- Electricity required to produce hydrogen to power H₂ vehicles


Туре	Annual km driven	Annual kWh
Passenger Cars	15,000	3,225
Light Trucks	15,000	4,473
Medium	14,260	7,812
Heavy	88,615	135,612
Buses	55,000	78,160

Electrification of Transportation

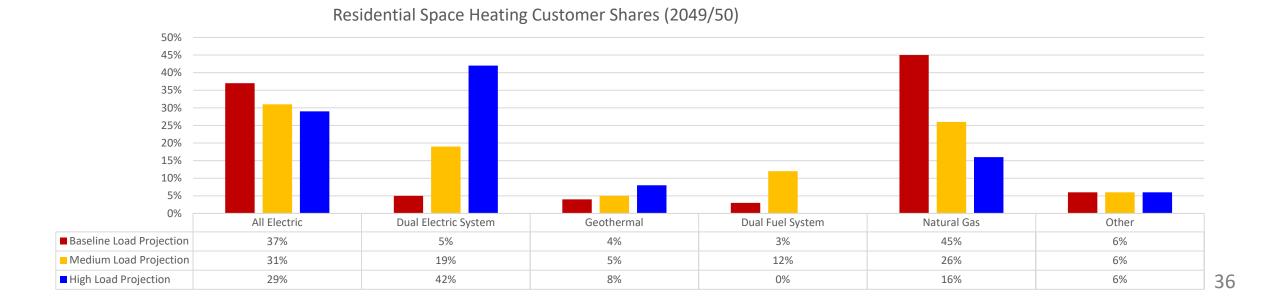
Baseline Load Projection -Electrification of Transportation


Medium Load Projection -Electrification of Transportation

Projected forecast by 2049/50

	Baseline Load Projection	Medium Load Projection	High Load Projection
MW	+650	+1,040	+1,330
GWh	+5,200	+8,300	+10,650
Millions of m ³	n/a	n/a	n/a

High Load Projection -Electrification of Transportation

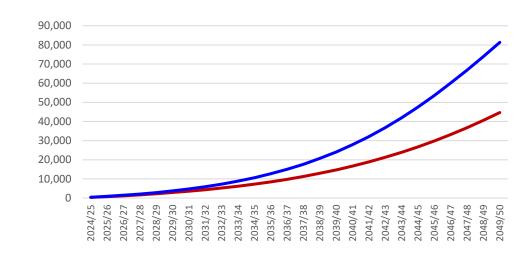


Space Heating

- **Baseline Load Projection** Customers are still selecting natural gas space heating and reflects an increase in the adoption of alternative technologies such air source heat pumps and cold climate air source heat pumps.
- Medium Load Projection Customers are moving away from traditional gas space heating and reflects an increase in the adoption of alternative technologies such air source heat pumps and cold climate air source heat pumps
- **High Load Projection** Customers are moving away from traditional gas space heating and reflects a greater increase in the adoption of alternative technologies such air source heat pumps and cold climate air source heat pumps

Projected fuel switching forecast by 2049/50

	Baseline Load Projection	Medium Load Projection	High Load Projection
MW	+150	+1,010	+4,320
GWh	+350	+2,980	+8,240
Millions of m ³	-40	-460	-1,080



Customer Self-Generation

& Storage

No. of installations

- **Baseline Load Projection** Assumes all customer self-generation is through solar generation (i.e., Solar PV) with a low rate in customer adoption of Solar PV technology
- Medium Load Projection Assumes all customer self-generation is through solar generation (i.e., Solar PV) and reflects moderate rate in customer adoption of Solar PV technology
- **High Load Projection** Assumes all customer self-generation is through solar generation (i.e., Solar PV) and consistent with the adoption rates assumed in the medium load projection.

Solar PV Customer Adoption

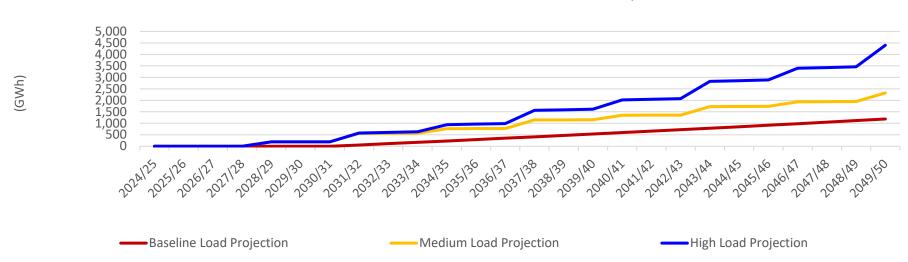
Projected forecast by 2049/50

MΜ

	Baseline Load Projection	Medium / High Load Projection
No. of installations	44,655	81,319
Total installed capacity (MW)	1,100	1,700
Annual electrical energy (GWh)	1,280	1,980
Total consumed by the customer (GWh)	510	790
Total sold back to the grid (GWh)	770	1,190

1800 1600 1400 1200 1000 800 600 400 200 2024/25 2035/36 2037/38 2038/39 2039/40 041/42 043/44 044/45 029/30 040/41 2036/37 042/43 045/46 2025/20 2026/2. 027/28 028/2 030/3 2031/3 2032/3 2033/3 2034/3 046/4 047/48 048/49 049/5

Total Installed Capacity of Solar PV

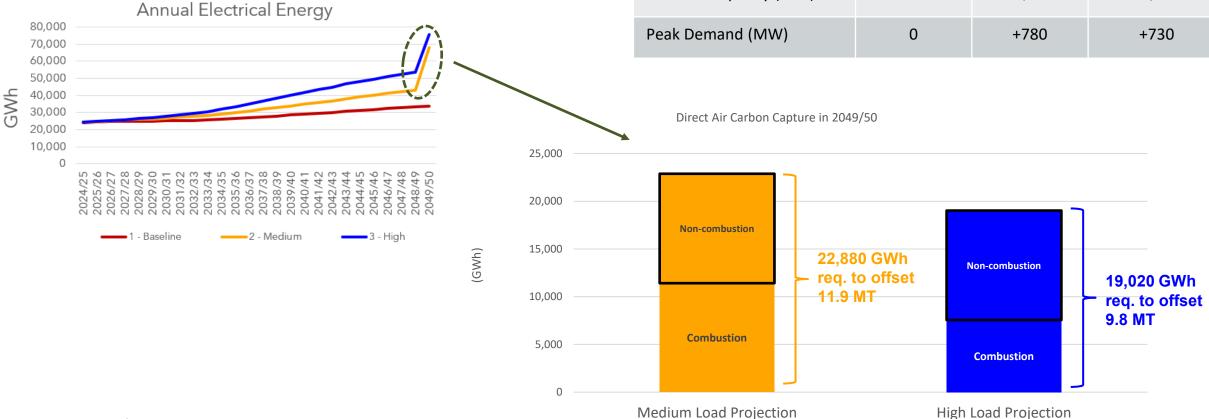

Industrial Decarbonization & Economic Development

- Baseline Load Projection
 - Long-term assumes existing Potential Large Industrial Load modeling approach
- Medium Load Projection
 - Decarbonization efforts by way of electrification every 6 years (50MW, 50MW, 50MW) starting in 2028/29
 - Economic development efforts by way of electrification every 6 years (50MW, 50MW, 50MW) starting in 2031/32
- High Load Projection
 - Decarbonization efforts by way of electrification every 6 years (50MW, 75MW, 100MW, 125MW) starting in 2028/29
 - Economic development efforts by way of electrification every 6 years (50MW, 75MW, 100MW, 125MW) starting in 2031/32

Projected forecast by 2049/50

	Baseline Load Projection	Medium Load Projection	High Load Projection
MW	+160	+370	+690
GWh	+1,190	+2,320	+4,400
Millions of m ³ *	0	-70	-130

* Note: Reflects reduction in natural gas consumption as customers decarbonize through electrification of processes


Industrial Decarbonization & Economic Development

Direct Air CO₂ Capture

The Medium and High load projections meet the objective of achieving net-zero economy by 2050 through negative emission technologies.

Projected forecast by 2049/50

	Baseline Load Projection	Medium Load Projection	High Load Projection
GWh	0	+22,880	+19,020
Installed Capacity (MW)	0	+3,900	+3,250
Peak Demand (MW)	0	+780	+730

2025 IRP Round 1 Engagement – TAC Meeting #2

We are looking for your feedback:

- To make sure we have captured a broad enough range in our load projections.
- To understand the factors that could impact the load projections.
- Key Planning Assumptions 5 Breakout Discussions:
 - Electrification of Transportation
 - Space Heating
 - Industrial Decarbonization / Economic Development
 - Customer Self-Generation / Storage
 - Direct Air Carbon Capture

Explore key planning assumptions at each station:

- What does [key planning assumption] look like in Manitoba leading up to 2050?
- What factors might influence [key planning assumption] in Manitoba?
- Are there any obstacles/barriers that could influence [key planning assumption]?
- Are there other factors we should be considering for [key planning assumption]?

Are there other planning assumptions you would like to provide feedback on?

How breakout discussions will work:

- Each station will have a facilitator and subject matter expert to support discussion.
- 30 minutes total Feel free to move around the stations.
- Dinger every five minutes to mentally signal opportunity to shift
- Share back at end Facilitators/group members

Resource Options Inventory & Proposed Strategies

Discussion Objectives

Our goal is to share information about our resource options inventory and proposed resource options strategies.

This information provides the foundation for future discussion on the modelling and analysis of the 2025 IRP, including scenarios and sensitivities.

Resource Options Inventory Introduction

Manitoba Hydro monitors and maintains an inventory of resource options that have the potential to meet Manitoba's future electricity needs.

This inventory consists of a range of different technologies including:

- Utility scale generation,
- Enhancements to existing generating stations,
- Distributed generation, and
- Energy efficiency (demand side management) measures.

Each of these resource options is considered and evaluated in the planning process based on their technical and economic characteristics.

The Range of Resource Options

The inventory is developed from a range of different information sources including:

- Publicly available reports
- Internal reports
- Consultant reports


The resources are at a range of different stages of planning and technological maturity

The resource inventory reflects a diversity of:

- Fuel types
- Dispatchability
- Technological maturity
- Costs
- Greenhouse gas (GHG) emissions

Planning is a continually evolving process with improvements or the addition of new resource options regularly made over time. Manitoba Hydro continuously monitors the state of developing technologies for readiness, including new resources in our models when there is sufficient information and confidence levels available for the technology.

Resource Options Inventory

This list shows all potential resource options available; however, some may not be available under specific Resource Options Strategies.

Selectable Energy Efficiency and Demand Response

Selectable Energy Efficiency

- Selectable energy efficiency is additional energy efficiency programming above and beyond what is included in the Efficiency Manitoba plan.
- Integrated resource planning evaluates selectable energy efficiency options on a level playing field with generation resources.
- Selectable energy efficiency options **reduce energy consumption**. If that energy reduction coincides with Manitoba's peak demand, then it can also **reduce the required capacity**.

Demand Response

• **Demand response** options (direct load control, curtailable load, etc.) will also be evaluated as a resource to reduce peak demand.

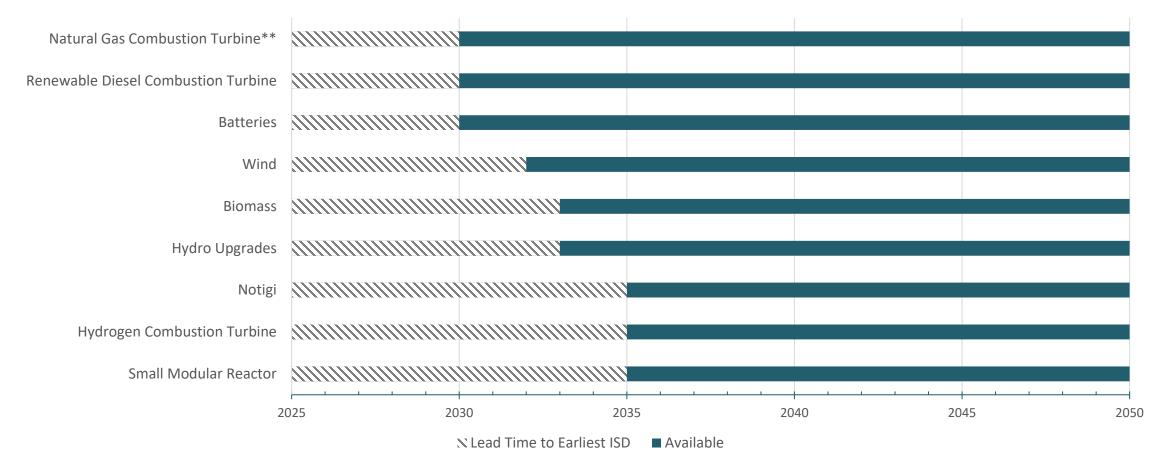
Characteristics captured in our modelling include:

- Installed Capacity
- Firm Capacity
- Operating Parameters
- Dependable Energy
- Development Timelines
- Economic Life

- Capital Costs
- Transmission Costs
- Fixed Operating Costs
- Variable Operating Costs
- Fuel Costs
- GHG Emissions

Characteristics define how each resource can operate within the energy supply system.

	Wind	Solar	Hydro	Natural Gas Combustion Turbine
Installed Capacity (MW)	100	100	100	100
Winter Firm Capacity (MW)	20	0	90	100
Annual Dependable Energy (GWh)	381	188	830	720
Economic Life (years)	30	25	72	30


	Wind	Solar	Hydro	Natural Gas Combustion Turbine
Installed Capacity (MW)	100	100	100	100
Winter Firm Capacity (MW)	20	0	90	100
Annual Dependable Energy (GWh)	381	188	830	720
Economic Life (years)	30	25	72	30

	Wind	Solar	Hydro	Natural Gas Combustion Turbine
Installed Capacity (MW)	100	100	100	100
Winter Firm Capacity (MW)	20	0	90	100
Annual Dependable Energy (GWh)	381	188	830	720
Economic Life (years)	30	25	72	30

	Wind	Solar	Hydro	Natural Gas Combustion Turbine
Installed Capacity (MW)	100	100	100	100
Winter Firm Capacity (MW)	20	0	90	100
Annual Dependable Energy (GWh)	381	188	830	720
Economic Life (years)	30	25	72	30

Examples of Earliest In Service Dates (ISD)

These are examples of earliest ISDs that will be assumed in the 2025 IRP, based on the best information currently available*. As planning progresses and technologies mature, earliest ISDs may adjust.


*The earliest in-service dates listed represent only a subset of resource options.

2025 IRP Round 1 Engagement – TAC Meeting #2

**Actual in-service dates for specific Natural Gas Combustion Turbines technologies may vary.

Economic Competitiveness of Resource Options

Levelized costs represent the estimated cost of producing energy and capacity but are not indications of the overall value of a resource to the system.

Proposed Resource Options Strategies

Four proposed strategies and their assumptions

Resource Options Strategies		Assumptions
Α	Technology Neutral	Compliant with federal Clean Electricity Regulations.
В	Net-Zero Grid 2035	Strategy A, plus requirement that electricity grid is net-zero by 2035.
С	Near Term Wind Generation Projects	Strategy B, plus up to 600 MW of Indigenous majority owned wind with dispatchable resources for reliability.
D	No Fuel-Based Resources	Strategy B, plus requirement of no fuel-based combustion turbines post 2035 (i.e., no natural gas, hydrogen, biofuel, or biomass generation).

Resources Included Under Each Strategy

	RESOURCE OPTIONS STRATEGY					
	A. Technology	B. Net-Zero			D. No Fuel-Based Resources	
Resource Type	Neutral	Grid 2035	Generation Projects	Pre 2035	Post 2035	
New Hydropower	\checkmark	\checkmark	\checkmark	\checkmark		
Upgrade Existing Hydropower	\checkmark	\checkmark	\checkmark	\checkmark		
Wind		\checkmark	\checkmark	\checkmark		
Solar		\checkmark	\checkmark	\checkmark		
Energy Efficiency		To be evaluated th	rough sensitivities			
Batteries		\checkmark	\checkmark	\checkmark	\checkmark	
Natural Gas Fueled CT		\checkmark	\checkmark		×	
Natural Gas Fueled CT with Carbon Capture		\checkmark	\checkmark	\checkmark	×	
Renewable Diesel Fueled CT		\checkmark	\checkmark	\checkmark	×	
Biomass Fueled Steam Turbine with Carbon Capture		\checkmark	\checkmark		×	
Biomass Fueled Steam Turbine without Carbon Capture		\checkmark	\checkmark	✓	×	
Hydrogen Fueled CT	\checkmark		\checkmark		×	
Market Purchases (Capacity Imports)						
Small Modular Reactors	\checkmark	\checkmark	\checkmark	\checkmark		

Next Steps

2025 IRP Round 1 Engagement – TAC Meeting #2

Next Steps: shaping our energy future together

What's next?

Dec 2 - TAC meeting 3 – Modelling, analysis, and evaluation

Let's talk about the future

Complete our survey by December 18, 2024: <u>hydro.mb.ca/future</u> Questions or comments? Email us at: <u>IRP@hydro.mb.ca</u>

Thank you!

Hydro.mb.ca/future

Email us at: IRP@hydro.mb.ca

To request accessible formats visit hydro.mb.ca/accessibility.

