Wholesale Electricity Concepts

A. David Cormie P. Eng. Division Manager Power Sales and Operations Manitoba Hydro May 2010

Topics

- Electricity Accounting
- Losses
- o Firm
- Capacity
- Energy
- Reserves
- Products

Electricity Accounting

For each moment in time

Reporting Periods

Hourly

Monthly

Yearly

Supply = Demand

Generation

MB Load

+ Net Metered Exports

o MB Demand =

Generation

Net Metered Exports

o MB Demand =

Customer Metered Demand

+ TX Losses

+ Distribution Losses

+ Transformation Losses

+ HVDC Conversion Losses

Transmission Losses and HVDC Conversion Losses

Losses are dependant upon

Losses (MW)

- Generation
- Air Temperature
- VG Outages

4 Average 7% - 8%

Generation (MW)

What does "Firm" mean?

- Physically Firm
 - Capacity
 - Generation
 - Transmission
- Financially Firm
 - Liquidated Damages (LD)
 - Buyer is kept financially whole
 - Force Majeure exclusion

• • Physically Firm

Largest TX Contingency

• • Firm Transmission

Firm Generation

• • Firm Power

Generation and Transmission Reserves

Capacity - MW

- The capability to produce power
 - Generator
 - Driven by a turbine
 - Hydraulic, steam, gas, air
 - Fueled by water, coal, gas, wind
 - Load reduction
 - Virtual generator
 - Curtailable load
- "Dispatchable" capacity
 - Produce power as required

• • Energy - MWh

- Output x time
- Long Spruce:

```
• 1 hour: 1010 \text{ MW x 1 hr} = 1010 \text{ MWh}
```

• 1 day: 1010 MW x 24 hr = 24,240 MWh

• 1 year: $24,240 \text{ MWh/d} \times 365 \text{ d} = 8.8 \text{ TWh}$

Annual average = 6.4 TWh

- Average Capacity Factor: 6.4/8.8 = 72%
 - Annual capacity factor will vary with water conditions

Hydraulic Power

Power

= Flow x Head x k

101 MW

 $= 16.6 \times 80 \times 0.076$

Long
Spruce
10 units
1010 MW

Accredited Capacity

- Capacity rated according to a uniform standard
 - Regional Reliability Organization
 - Was MAPP
 - Now MISO
- Backed by verified performance tests
 - Normalized for operating conditions
- Backed by adequate fuel resources
 - 4 continuous hours at time of peak

Long Spruce G.S.

- Maximum Capacity is dependant upon head
 - River flow,
 - Upstream levels
 - Trash, ice
 - Downstream levels
 - Ice jams
 - Forebay
- Rated at 1010 MW

Operating Reserves

- Generating capacity reserved to maintain
 - reliable supply to load
 - control of imports and exports
 - Inadvertent flows
- Types
 - Regulation
 - Load Following
 - Contingency
- Capacity not available for commercial use

Regulation and Load Following Reserves

- Generating capacity reserved to follow MB load up and down on a moment by moment and over the hour basis
- MH maintains
 - minimum of 50 MW
 - Up to 250 MW
- Regulation reserves
 will increase as more
 wind generation is
 added to system
 Load

Load (MW)

Contingency Reserves

- NERC Standard
 - Mandatory for interconnected systems
- Contingency
 - Reserves for largest single loss
 - Spinning 40%
 - Supplemental 60%
 - Generation
 - Curtailable load 'Option R'
- Re-establish in 105 minutes
- Options
 - Start up generation
 - Curtail 'Option A' load
 - Buy down sales

1000 MW 400 MW 600 MW 550 MW

Contingency Loss of HVDC

Reserve Sharing Group

- MISO MB Hydro CRSG Agreement
 - Effective Jan 1, 2010

Largest Shared Contingency	1500 MW
MISO Share	1350 MW
MH Share	150 MW
Spinning – 40%	60 MW
 Supplemental – 60% 	90 MW
 Generation 	40 MW

50 MW

Curtailable load 'Option R'MH by itself

o MH by itselfo MH in CRSG950 MW100 MW

o Net Benefit 850 MW \$100 million/yr

The Need for Planning Reserves

- Additional Generation Capacity
 - Load forecast variations
 - Weather
 - Load growth uncertainty
 - Outages
 - Operating reserves
- MH Planning Criteria
 - 12% of forecast annual peak load plus any required for committed export sales

Capacity Products

- MH only sells system power
 - Provided from entire system of resources
 - No specific station/source
- Firm Power
 - Seller responsible for reserves
 - Backed by dependable energy and firm TX
 - Sold to Manitoba Customers
- System Participation Power
 - Buyer shares in system risk
 - responsible for own reserves
 - MH has curtailment rights
 - Backed by dependable energy
 - Sold on the export market

Generation Costs (Incremental \$/MWh)

Hydro

Water rentals

O and M

Total

At Border

Gas Thermal

Fuel (@\$5/MBTU)

Gas CT

Fuel (@\$5/MBTU)

Start (\$15,000 each)

24 hour run

1 hour run

Total

\$3.41/MWh

\$0.15/MWh

\$3.56/MWh

\$3.92/MWh

\$64/MWh

\$65/MWh

\$5/MWh \$77/MWh

\$70 - \$142/MWh

Fuel and Power Purchases

- Purchases necessary to serve
 - Manitoba load
 - On/off peak arbitrage
 - Export commitments
- Includes
 - Power
 - Coal and Freight
 - Fuel Oil
 - Natural Gas
 - Transmission Service
 - Natural Gas Storage and Transport
 - Hedging Products

Fuel and Power Purchases

26

Includes both fixed and variable costs (2009/10)

• • The End

Thank You!

