Risk Analysis using PRISM (Power RIsk System Model)

Tuesday, December 16, 2008

Presented by:

Lindsay Melvin & Kelly Hunter

Export Power Marketing Department

Presentation Outline

- □ Reasons for Developing PRISM
- □ Purpose of PRISM
- □ Key Inputs
- □ Representation of MH System in PRISM
- □ The Simulation
- □ Sample Risk Analyses

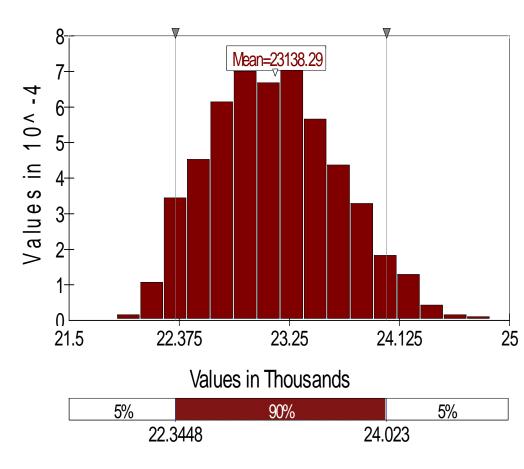
Reasons for Developing PRISM

- □ To analyze the financial impact of variations in:
 - Water conditions (volume risk)
 - Manitoba load
 - Gas and electricity prices
 - Forward contracting risk (export sales)
 - Transmission access (intertie connections)
 - Wind energy (variability in generation)
- □ Recommended and initial development by RiskAdvisory

Purpose of PRISM

- □ Provide Monte Carlo Simulation
 - Probabilistic analysis
- □ In-house model
 - Therefore functional, easily modified
- □ To provide an overview, not a precise analysis
- ☐ Used to identify range of outcomes associated with defined scenarios

Limitations

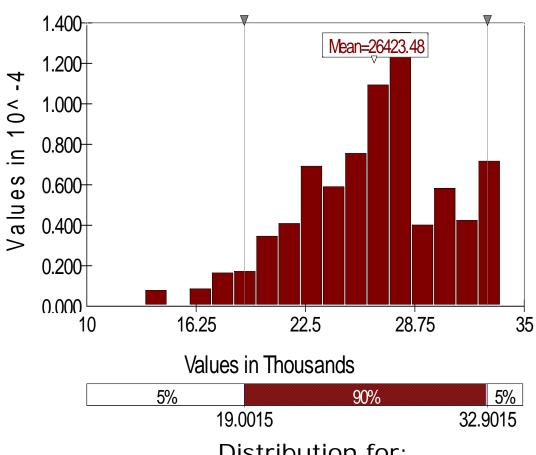

- □ Limited resolution
- □ Limited capacity consideration
- □ 5 year analysis period set in long-term planning horizon
 - Fiscal Years 2010 2014
- □ Price volatility data is not readily available
 - Annual price forecast used
 - No intra year correlation

Key Inputs

- Manitoba Load
- □ Hydro Generation
- ☐ Gas and Electricity Prices
- □ Sourced from Approved MH resources
 - Electric Load Forecast
 - Electricity Export Price Forecast
 - Energy Price Outlook Report
 - HERMES (Hydraulic Operations)
 - SPLASH (Resource Planning & Market Analysis)

Key Input: Manitoba Load

- □ Load distribution from HERMES
 - 50 discrete load values per season
 - Year 1 Load
- □ Load for years 2, 3, 4, and 5 is scaled from year 1 based on annual load growth rate
- □ Load growth rate = average growth rate from 2008/09 to 2014/15 in Electric Load Forecast

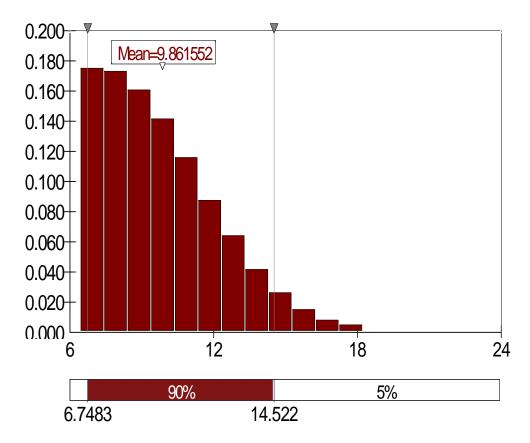


Distribution for:

Year 1 Manitoba Load (GWh)

Key Input: Hydro Generation

- SPLASH provided total hydro energy generation
- 94 discrete flow cases represent historic flow years 1912 - 2005



Distribution for:

Year 1 Hydro Generation (GWh)

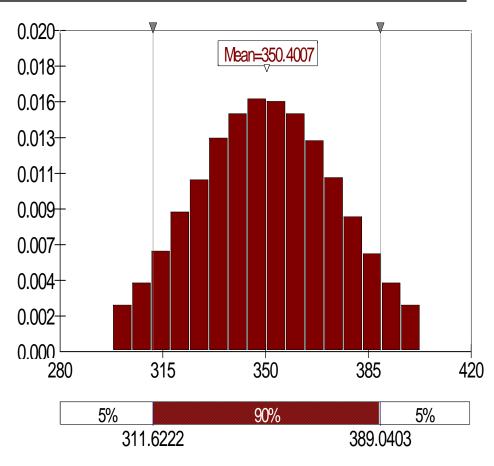
Key Input: Gas Prices

- Normal distribution with truncated lower tail
- □ Based on Natural
 Gas price from
 Energy Price
 Outlook Report
 (reference,
 medium-low,
 medium-high)

Distribution for:

Year 1 Gas Price (2008 US \$ / MMBtu)

Key Input: Electricity Prices


- Normal distribution
- Data source:Electricity ExportPrice Forecast
- Correlationbetween gas and electricity prices

- Model is Seasonal
 - Summer = April October (7 months)
 - Winter = November March (5 months)

- Model is Seasonal
- □ Chronologic Flow
 - 5 flow years for 5 year analysis
 - Each of the 94 historic flow years has an equal chance of being selected for year 1
 - Flow cases for years 2, 3, 4, and 5 are sequential based on year 1 flow year
 - If Year 1 = 1956, then Year 2 = 1957, Year 3 = 1958, etc.

- Model is Seasonal
- □ Chronologic Flow
- □ Intertie Capabilities
 - Imports will be limited during high water conditions

- Model is Seasonal
- □ Chronologic Flow
- □ Intertie Capabilities
- Wind Generation
 - Capacity = 100 MW
 - Capacity Factor = 40%
 - Normal distribution
 - Truncated outliers

Sample Distribution:

1 Year Wind Generation (GWh)

- Model is Seasonal
- □ Chronologic Flow
- □ Intertie Capabilities
- Wind Generation
- □ Storage
 - 5 storage draws available
 - Storage draws are priced very high
 - □ Therefore, storage is rarely used

- Model is Seasonal
- □ Chronologic Flow
- □ Intertie Capabilities
- □ Wind Generation
- □ Storage
- □ Thermal Generation
 - Includes Brandon 5, Brandon CT, Selkirk GS
 - Available energy is determined from:
 - Capacity
 - □ Annual maintenance (6 weeks/year)
 - □ Forced outage rates (HERMES)

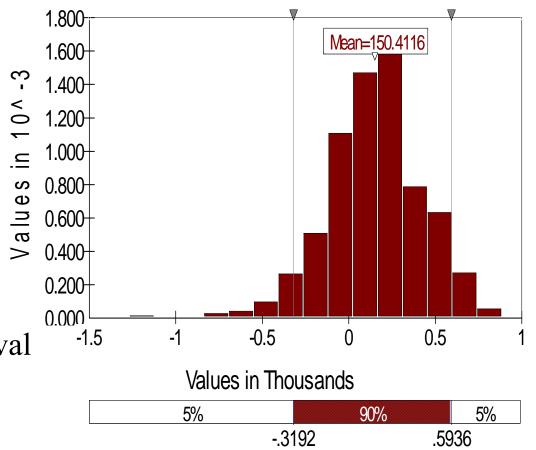
- Model is Seasonal
- □ Chronologic Flow
- □ Intertie Capabilities
- □ Wind Generation
- □ Storage
- □ Thermal Generation
- □ Forward Contracts
 - Source: Power Resource Plan

Representation of MH System

in PRISM

- Model is Seasonal
- □ Chronologic Flow
- □ Intertie Capabilities
- □ Wind Generation
- □ Storage
- □ Thermal Generation
- □ Forward Contracts
- Opportunity Export
 - Based on surplus energy, on and off peak prices, and intertie capabilities

The Simulation

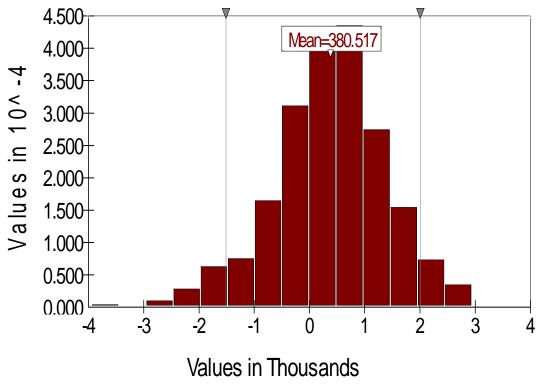

- □ One simulation requires 1000 iterations
- □ For each iteration
 - Inputs with distributions are determined
 - Energy is stacked (resources are selected)
 - Net Revenue is determined
 - □ Annually (1 year) and cumulatively (5 years)
 - Repeat
- □ Output: Model produces plots (histograms) of distributions of inputs and outputs

Key Output: Net Revenue

Year 1: Flow Yr 1939, Fiscal Yr 2010/11 Supply	Energy (GWh) (@ load)	Revenue (CDN\$)
Y1 Hydro Generation	19001	(\$72,625,535)
Y1 Wind	350	(\$19,832,065)
Y1 Coal (Brandon 5)	717	(\$29,853,820)
Y1 Imports	6475	(\$424,593,789)
Y1 Gas (Selkrik GS + Brandon CT)	0	\$0
Y1 Bookouts	0	\$0
Y1 Storage Draws	0	\$0
Total Supply	26544	(\$546,905,211)
Demand		
Y1 Manitoba Load	23140	
Y1 Forward Contracts	3404	\$200,998,578
Y1 Incremental Load		\$539,366
Y1 Opportunity Export	0	\$0
Total Demand	26544	\$201,537,944
Total Energy (GWh)		
Y1 Total Supply	26544	
Y1 Total Demand	26544	
Y1 Net Energy	0	
Net Revenue (Millions of Dollars)		
Y1 Total Revenue (\$M)	\$202	
Y1 Total Costs (\$M)	(\$547)	
Y1 Net Revenue (\$M)	(\$345)	

Sample Risk Analysis: Base Case

- □ All distributions as presented. Includes:
 - Year 1 flow year
 - Load
 - Gas price
 - Electricity price
 - Wind
- □ Mean Net Revenue = \$150 M
- □ 90% Confidence Interval (C.I.):
 - 5%: -\$319 M
 - 95%: \$593 M
- □ Base case is used to benchmark scenarios



Sample Distribution:

Year 1 Net Revenue (\$M)

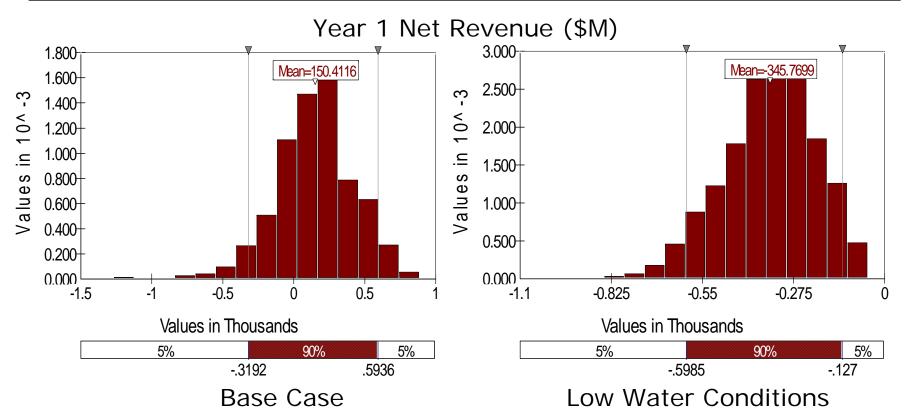
Sample Risk Analysis: Base Case

- □ 5 Year Cumulative
- \square Mean = \$380 M
- □ 5 Year Mean is not equal to Year 1
 Mean x 5
 - i.e. \$150 M x 5
 - = \$750 M
 - ≠ \$380 M
- Confidence Interval (C.I.):
 - 5%: -\$1,512 M
 - 95%: \$2,006 M

Sample Distribution:

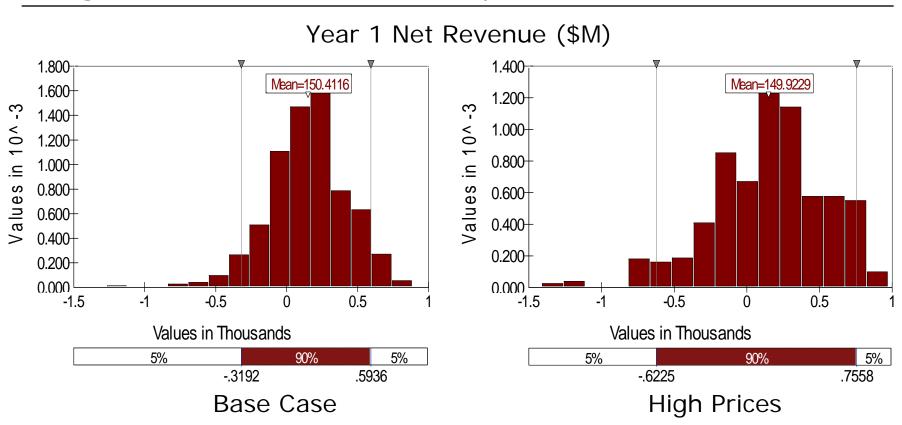
-1.5124

5%


5 Year Cumulative Net Revenue (\$M) 22

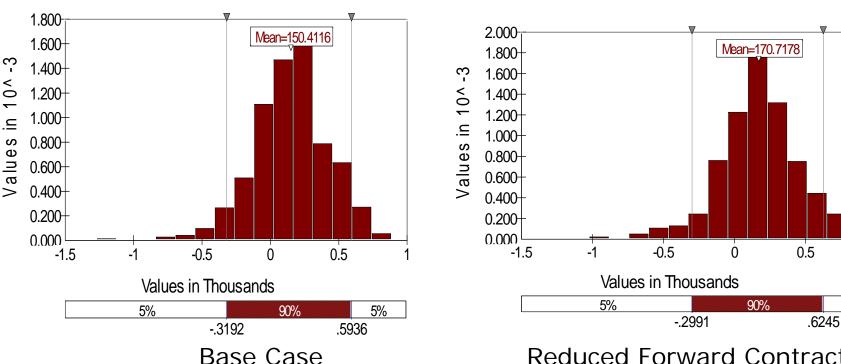
90%

5%


2.0068

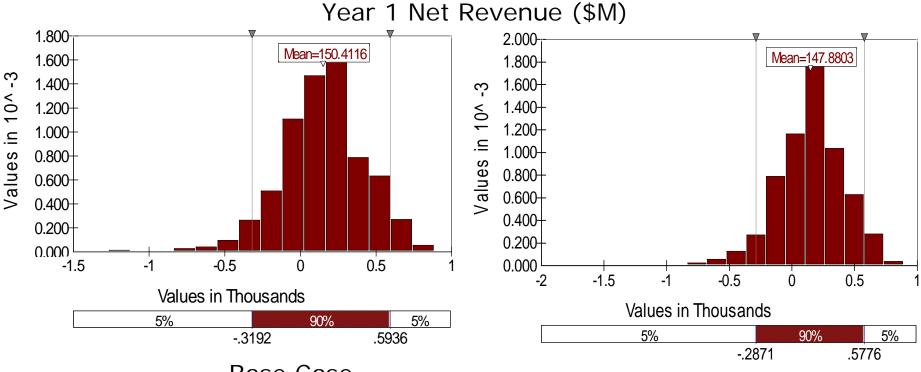
Sample Risk Analysis: Low Water Conditions (FY 1939)

- □ Set Year 1 Flow Year = Low Flow Year = 1939
- □ Base Case Mean = \$150 M (C.I. -\$319 M to \$593 M)
- □ Scenario Mean = -\$345 M (C.I. -\$598 M to -\$127 M)


Sample Risk Analysis: High Gas and Electricity Prices

- □ Set Gas & Electricity Prices = 95th percentile
- □ Base Case Mean = \$150 M (C.I. -\$319 M to \$593 M)
- □ Scenario Mean = \$149 M (C.I. -\$622 M to \$755 M)

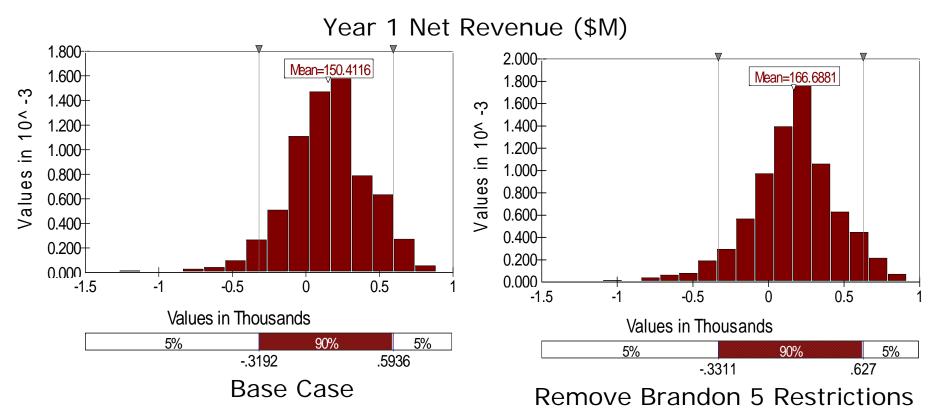
Sample Risk Analysis: Forward Contracts = 50% of Current Commitments


Year 1 Net Revenue (\$M)

- **Reduced Forward Contracts**
- Set Forward Contracts = 50% of current commitments
- Base Case Mean = \$150 M (C.I. -\$319 M to \$593 M)
- Scenario Mean = \$170 M (C.I. \$299 M to \$624 M)

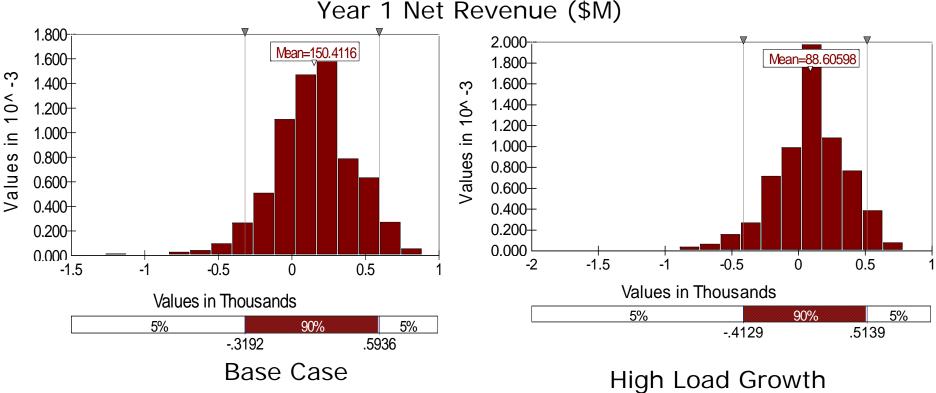
5%

Sample Risk Analysis: Add 400 MW Gas CCCT

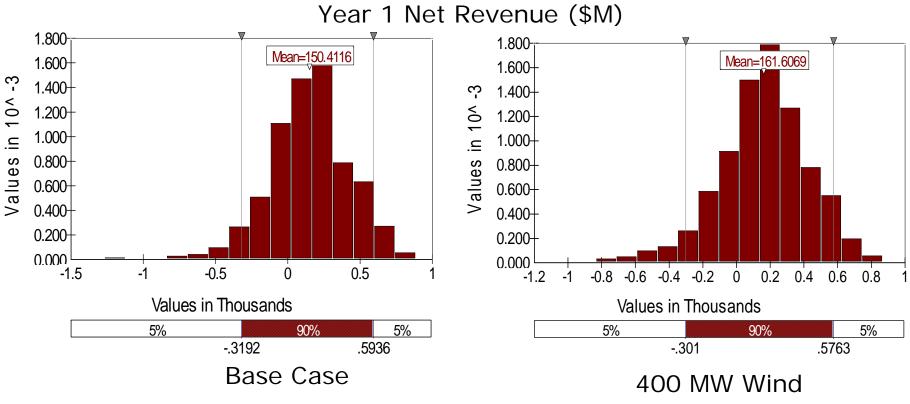


Base Case

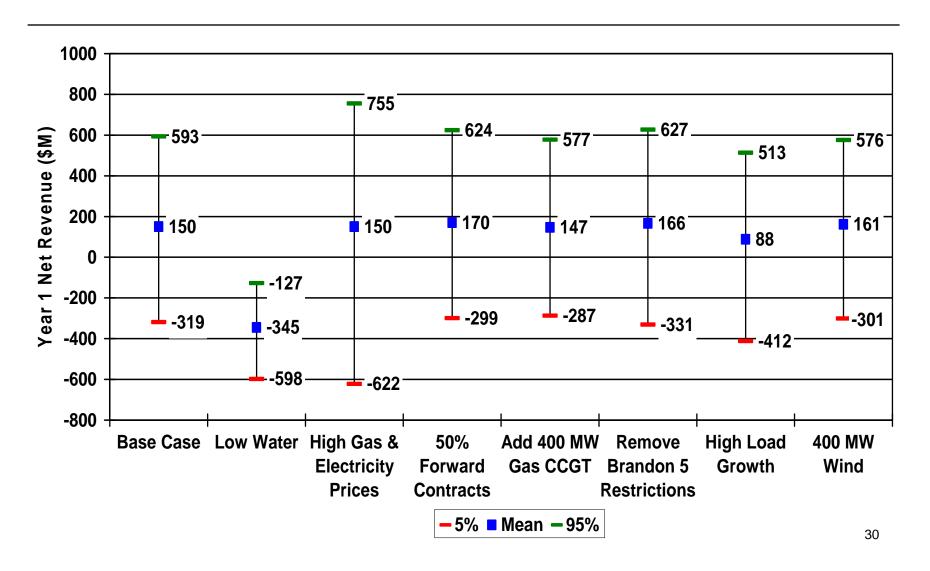
Add 400 MW Gas CCCT


- □ Add 400 MW Gas CCCT to Manitoba Hydro generation system
 - Heat Rate = 8 MMBTU/MWh
- □ Base Case Mean = \$150 M (C.I. -\$319 M to \$593 M)
- □ Scenario Mean = \$147 M (C.I. -\$287 M to \$577 M)

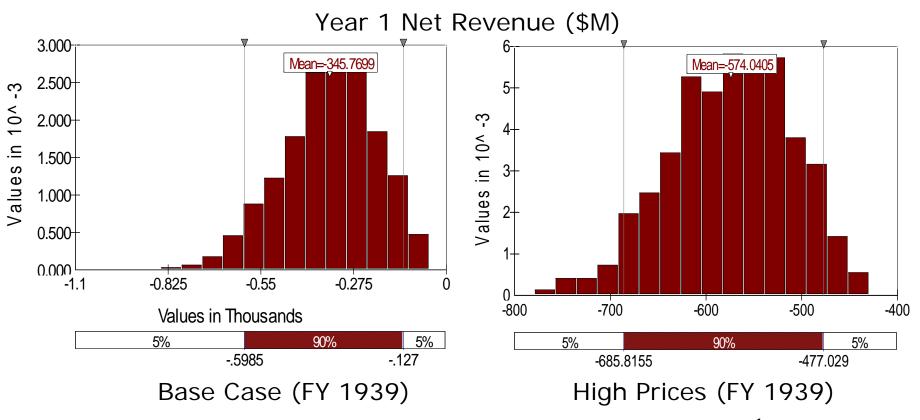
Sample Risk Analysis: Remove Brandon 5 Restrictions


- □ Allow Brandon 5 to operate economically
- □ Base Case Mean = \$150 M (C.I. -\$319 M to \$593 M)
- □ Scenario Mean = \$166 M (C.I. -\$331 M to \$627 M)

Sample Risk Analysis: High Load Growth


- Set Average Annual Load Growth Rate = 4%
- Base Case Mean = \$150 M (C.I. -\$319 M to \$593 M)
- Scenario Mean = \$88 M (C.I. -\$412 M to \$513 M)

Sample Risk Analysis: 400 MW Wind



- □ Add 300 MW of Wind Generation (Total = 400 MW)
- □ Base Case Mean = \$150 M (C.I. -\$319 M to \$593 M)
- □ Scenario Mean = \$161 M (C.I. -\$301 M to \$576 M)

Sample Risk Analysis: Summary

Sample Risk Analysis with Low Flow: High Gas and Electricity Prices

- □ Year 1 Flow = 1939 and Gas & Electricity Prices = 95th Percentile
- □ Base Case Mean = -\$343 M (C.I. -\$611 M to -\$164 M)
- □ Scenario Mean = -\$574 M (C.I. -\$685 M to -\$477 M)

PRISM Modifications for V2008-1

- □ Updated Forecasts (data and application of data):
 - Load Forecast
 - Electricity Export Price Forecast
 - Hydro Generation (from SPLASH)
 - Exchange Rate
 - Gas Price Forecast
- □ Implementation of:
 - Foreign Exchange Volatility
 - Load Growth Volatility
 - Annual Energy for Forward Contracts
 - Brandon 5 Operating Restrictions

Impact of 2008 Assumptions & Data

- □ Year 1 Net Revenue decreased by approximately \$45 M
- □ Reasons:
 - Brandon 5 Restrictions
 - Increased Load
 - Higher Electricity Export Price Forecast
 - Less Favorable Exchange Rate

PRISM Conclusions

- □ PRISM provides a coarse overview of the MH system
- □ PRISM considers uncertainty in:
 - Water conditions
 - Load
 - Prices
 - Wind
- □ All data and key inputs come from within MH
- □ The model is a Monte Carlo analysis where one simulation consists of 1000 iterations
- □ PRISM can analyze various scenarios
- □ Discussion? Suggestions?