Manitoba Hydro 2017/18 & 2018/19 General Rate Application COALITION/MH I-203a-d-Attachments

# 2014

## Integrated Pole Maintenance (IPM) Manual



## Manitoba Hydro

5/12/2014

Available in accessible formats upon request



| INTRO                                                                       | DUCTION                                                           | 4  |  |  |  |  |  |  |
|-----------------------------------------------------------------------------|-------------------------------------------------------------------|----|--|--|--|--|--|--|
| BACK                                                                        | GROUND                                                            | 4  |  |  |  |  |  |  |
| 1. Saf                                                                      | fety and Environmental Concerns                                   | 5  |  |  |  |  |  |  |
| 1.1                                                                         | Personal Protective Equipment                                     | 6  |  |  |  |  |  |  |
| 1.2                                                                         | First Aid                                                         | 6  |  |  |  |  |  |  |
| 1.3                                                                         | Chemicals                                                         | 7  |  |  |  |  |  |  |
| 1.3                                                                         | 1.3.1 General Chemical Storage Requirements7                      |    |  |  |  |  |  |  |
| 1.3.2 General Personal Protective Equipment for Safe Handling of Pesticides |                                                                   |    |  |  |  |  |  |  |
| 1.3                                                                         | .3 List of Approved Chemicals for I.P.M                           | 9  |  |  |  |  |  |  |
| 1.3                                                                         | .4 Pesticide Container Disposal                                   | 10 |  |  |  |  |  |  |
| 1.4                                                                         | Spill Response                                                    | 10 |  |  |  |  |  |  |
| 1.5                                                                         | Transportation of Dangerous Goods                                 | 10 |  |  |  |  |  |  |
| 1.6                                                                         | Licences, Permits and Insurances                                  | 12 |  |  |  |  |  |  |
| 1.7                                                                         | Cleanup                                                           | 12 |  |  |  |  |  |  |
| 1.8                                                                         | Biosecurity (New for 2014)                                        | 12 |  |  |  |  |  |  |
| 1.8                                                                         | .1 Customer Service and Distribution Agricultural Biosecurity SOP | 14 |  |  |  |  |  |  |
| 2.                                                                          | Treatments                                                        | 16 |  |  |  |  |  |  |
| 2.1                                                                         | Pole Inspection                                                   | 16 |  |  |  |  |  |  |
| 2.2                                                                         | Pole Strength Evaluation                                          | 17 |  |  |  |  |  |  |
| 2.3                                                                         | Sounding                                                          | 29 |  |  |  |  |  |  |
| 2.4                                                                         | Boring                                                            | 30 |  |  |  |  |  |  |
| 2.5                                                                         | Fume                                                              | 30 |  |  |  |  |  |  |
| Bas                                                                         | ic Fumigant Application Pattern                                   | 32 |  |  |  |  |  |  |
| 2.6                                                                         | Internal Void Flooding                                            | 34 |  |  |  |  |  |  |
| 2.7                                                                         | Groundline Treatment                                              | 34 |  |  |  |  |  |  |
| 2.8                                                                         | Backfilling                                                       | 35 |  |  |  |  |  |  |
| 2.9                                                                         | Ants                                                              | 38 |  |  |  |  |  |  |
| 2.10                                                                        | Mechanical Damage                                                 | 38 |  |  |  |  |  |  |
| 2.11                                                                        | Internal Treatment of Poles in Standing Water                     | 40 |  |  |  |  |  |  |
| Cor                                                                         | roded Rock Plate Assembly                                         | 44 |  |  |  |  |  |  |

|      | Туре 1                                     | . 45 |  |  |  |  |  |  |  |
|------|--------------------------------------------|------|--|--|--|--|--|--|--|
|      | Туре 2                                     | . 46 |  |  |  |  |  |  |  |
|      | Туре 3                                     | . 47 |  |  |  |  |  |  |  |
|      | Туре 4                                     | . 48 |  |  |  |  |  |  |  |
|      | Туре 5                                     | . 49 |  |  |  |  |  |  |  |
|      | Туре 6                                     | . 50 |  |  |  |  |  |  |  |
|      | Туре 7                                     | . 51 |  |  |  |  |  |  |  |
| 3.   | Materials and Tools                        | . 52 |  |  |  |  |  |  |  |
| 3.   | 1 Tags                                     | . 52 |  |  |  |  |  |  |  |
| 3.   | 2 Plugs                                    | . 55 |  |  |  |  |  |  |  |
| 3.   | 3 Paper                                    | . 55 |  |  |  |  |  |  |  |
| 3.4  | 4 Tools                                    | . 56 |  |  |  |  |  |  |  |
| 4.   | Administration                             | . 56 |  |  |  |  |  |  |  |
| 4.   | 1 Start-up Meetings                        | . 56 |  |  |  |  |  |  |  |
| 4.   | 2 Work Clearance Requests                  | . 56 |  |  |  |  |  |  |  |
| 4.   | 3 Quality Assurance Audits                 | . 57 |  |  |  |  |  |  |  |
| 4.4  | 4 Accident and Spill Reporting             | . 57 |  |  |  |  |  |  |  |
| 4.   | 5 Private Properties and Complaint Records | . 57 |  |  |  |  |  |  |  |
| 4.   | 6 Contact Phone Numbers                    | . 57 |  |  |  |  |  |  |  |
| 5.   | IPM Report Tool                            | . 58 |  |  |  |  |  |  |  |
| 5.   | 1 Starting IPM Report Tool                 | . 58 |  |  |  |  |  |  |  |
| 5.2  | 2 Entering Daily Reports                   | . 59 |  |  |  |  |  |  |  |
|      | Daily Reports                              | . 59 |  |  |  |  |  |  |  |
|      | Daily Report Sheet                         | . 59 |  |  |  |  |  |  |  |
|      | Report Information                         | . 60 |  |  |  |  |  |  |  |
|      | Safety Tab                                 | . 60 |  |  |  |  |  |  |  |
|      | Crew Tab                                   | . 61 |  |  |  |  |  |  |  |
| Crev | w Members                                  | . 61 |  |  |  |  |  |  |  |
|      | Production                                 | . 61 |  |  |  |  |  |  |  |
|      | Crew list                                  | . 62 |  |  |  |  |  |  |  |
|      | Do you want to save changes?               | . 63 |  |  |  |  |  |  |  |
|      | Reject Poles                               | . 63 |  |  |  |  |  |  |  |
|      | Entering a Reject Pole                     | . 64 |  |  |  |  |  |  |  |
|      | Finished entering a Reject Pole64          |      |  |  |  |  |  |  |  |

| Material Usage               | 5 |
|------------------------------|---|
| Entering a material          | 5 |
| Finished entering a material | 6 |
| Updated Daily Report list    | 6 |
| 5.3 Inspector Hours          | 7 |
| 5.4 Create Reports           | 7 |
| Inspector Hours              | 7 |
| Inspector Hours              | 8 |
| Cost Summary                 | 8 |
| Reject Poles                 | 8 |
| Safety                       | 8 |
| Danger Poles                 | 8 |
| Crew                         | 8 |
| 5.5 Sample Reports           | 9 |

## INTRODUCTION

Manitoba Hydro's Integrated Pole Maintenance is an ongoing, systematic program of pole inspection, mitigation of wood deterioration through the application of supplemental wood preservative and insecticide, and the rehabilitation or replacement of weak poles.

Integrated pole maintenance is administered by the Program Coordinator from Distribution Asset Maintenance Planning. The pole maintenance work is carried out by contractors for Manitoba Hydro and is inspected and reported on by Patrollers from Line Maintenance.

This manual provides guidelines for Integrated Pole Maintenance work and is a supplement to the Request for Quotation tender. This manual will take you through the technical, safety, and environmental aspects of pole maintenance and inspection work. Examples of the different treatment methods and how to record and report on this work will be given and explained as well.

## BACKGROUND

Over time, natural depletion of the original preservative treatment in utility poles causes the concentration of the preservative to fall below the level toxic to decay fungi. This and the exposure of unprotected wood as the pole seasons put the pole at risk for decay infection. When this happens, decay begins and the pole deteriorates, usually in

the groundline area of the pole. The initial stages of decay provides attractive habitat for carpenter ants, which nest in the softened wood, tunneling out the interior of the pole. In either case, pole strength is eventually reduced below design requirements. This presents the opportunity for unexpected power interruption, with the possibility of a dangerous situation, should the pole fail.

Regular pole inspection and maintenance allows Manitoba Hydro to detect and rehabilitate or replace the weak poles before they fail, and to re-establish preservative levels and eradicate carpenter ant infestations in the good poles; interrupting the deterioration process and prolonging pole service life.

Manitoba Hydro implemented this program in 1989, inspecting and maintaining approximately 5,500 poles. This has grown to an annual program of approximately 70,000 poles across the Province.

Manitoba Hydro's Integrated Pole Maintenance program is carried out in accordance with all federal and provincial legislation and associated regulations. The program itself is permitted under the auspices of a Manitoba Conservation Environment Pesticide Use Permit issued annually.

In general, the work involves detailed pole inspection, pole strength evaluation, prescriptions for line maintenance, application of remedial treatments, recommendations for pole replacement or reinforcement, and the recording of all pole and treatment information.

The work proceeds as follows:

- excavation of the earth around the pole to a depth of 60 centimetres.
- thorough pole inspection inside and out.
- pole strength evaluation.
- prescription of remedial treatment or replacement.
- remedial treatment if appropriate.
- filling and tamping of the excavation.

All poles that are fifteen years of age or older and are considered serviceable for a further fifteen years receive remedial treatment. Poles that are deemed to require replacement are not remedially treated.

## 1. Safety and Environmental Concerns

The Manitoba Hydro onsite representatives (Inspectors) are responsible for the inspection of the work done by the contractors. They are responsible for stopping any work that they deem as unsafe or that does not follow safe work guidelines as laid out by Manitoba Hydro in Requirements or Conditions of the tender. The following sections outline requirements of the contractor that the Inspectors must enforce. If the

contractor does not follow any of these requirements then the Inspector must stop any work from occurring until the requirements are met.

## 1.1 Personal Protective Equipment

The contractor must ensure that all of their employees wear appropriate protective equipment when exposed to any hazards. Protective equipment includes: hard hats, eye protection, gloves, high visibility non-synthetic clothing, and CSA approved green triangle class 1 and CSA dielectric "OMEGA" rated protective footwear.



The person in the picture is wearing all appropriate safety equipment. His equipment includes a hard hat, protective safety glasses, high visibility coveralls, long sleeve shirt, and steel-toe boots with CSA approved green triangle class 1 and CSA dielectric "OMEGA" rated patches on them.

When applying chemicals the person applying also needs to wear goggles, an apron, chemical resistant gloves and boots.



These two CSA rating symbols should be present on all boots worn on the worksite at all times.

## 1.2 First Aid

The contractor must ensure that at all times clean water, soap, towels, eyewash stations, and first aid kits are available for all persons onsite.



## 1.3 Chemicals

The contractor must maintain a Workplace Hazardous Materials Information System (WHMIS) file for all hazardous materials used at each work site. Controlled substances brought to a worksite without Material Safety Data Sheets (MSDS) cannot be used for any work. MSDSs for all chemicals that may be used are to be supplied by contractor. Any other alternate chemicals must be approved by the Program Coordinator before being used at the worksite.







All chemicals should be labeled if they are not in their original containers with workplace labels similar to the ones shown in the pictures here. Please see the Pesticide Application Requirements for Manitoba Hydro Employees and Contractors publication number 0004/05 from the Employee Safety and Health Department of Manitoba Hydro for full regulatory and applicator licensing information, technical guidance, and safety

requirements for pesticide applications, located in Tender Appendix.

## 1.3.1 General Chemical Storage Requirements

All chemicals used for Integrated Pole Maintenance are required to be stored according to the following minimum conditions:

- In a cool, dry, well ventilated area.
- Pesticides are not stored together with food, food products, drinking water and/or personal use equipment.
- On level, solid ground.
- Elevated off the ground.
- Protected from the elements.
- Away from heat, flame, or any source of ignition.
- In a restricted access, fenced area with gated, locked entrances.
- In their original, labeled containers.
- Spill containment within a reasonable distance.
- Area kept neat and tidy.
- Different pesticides are stored in separate areas to prevent cross contamination.
- Maintenance areas and equipment are segregated from the pesticides storage areas.
- No smoking signs posted.

In addition to these conditions, log books must be maintained up to date for all stored chemicals inventory. Log books must also be maintained on any vehicle carrying chemicals.

The chemical storage facility must have similar signage posted at all pedestrian entrances:



Copies of the above sign are available through Employee Health and Safety.

These requirements are only for general storage of chemicals. They do not include consideration of every possible chemical incompatibility and the resulting chemical reaction. Always refer to the product Material Safety Data Sheet to find all storage criteria.

For complete guidelines on chemical storage please see the Chemical Storage publication number 0018/06 from the Employee Safety and Health Department of Manitoba Hydro in Tender Appendix.

## 1.3.2 General Personal Protective Equipment for Safe Handling of Pesticides

When handling any chemicals the following personal protective equipment must be worn:

- Protective eyewear (i.e. goggles)
- Chemical resistant rubber gloves
- Long sleeves
- Protective clothing (i.e. an apron)
- Chemical resistant boots

Always refer to the Material Safety Data Sheets for each chemical's personal protective equipment for specifications when handling.

## **1.3.3** List of Approved Chemicals for I.P.M.

#### Internal Treatment

Guardsman Post and Pole Fumigant Woodfume FluRods Cobra Rods

## Internal Void Flooding

Mineral Spirits Copper Naphthenate 2% and 8%

## <u>Groundline</u>

CuRap 20 Cop-R-Plastic Cobra Wrap Cobra Wrap SD

## <u>Ants</u>

Prelude 240 Dragnet FT <u>External Surface Treatment and Filling Inspection Holes</u> Copper Naphthenate 2% and 8%

## **1.3.4** Pesticide Container Disposal

All empty containers must be disposed of according to Manitoba Government Provincial Guidelines. All containers must be triple rinsed and made unusable before being disposed of at approved collection sites.

## 1.4 Spill Response

The contractor must ensure that spill response equipment and materials are onsite at all times with the exception of holding/storage containers which must be within a reasonable distance from the work site. A spill response kit should include an absorptive material such as kitty litter that can be used to absorb any spill. Any contaminated soil from the site should also be removed with a shovel and disposed of properly. In the event of a spill the contractor will complete a Hazardous Materials Incident Report with the help of the Inspector.

## **1.5** Transportation of Dangerous Goods

The contractor must ensure that anyone who is transporting dangerous goods has a Transportation of Dangerous Goods certification in accordance with the Transportation of Dangerous Goods Act.

For transport of dangerous goods by air or over water please consult the Manitoba Hydro Dangerous Goods Officer as these regulations are often updated.

| Product Trade<br>Name         | Transportation of Dangerous Goods<br>Description                                                                                                                      | TDG<br>Label | TDG<br>Placard            | Limited<br>Quantity<br>Index | Reportable<br>Quantity | Bill of<br>Lading<br>Required |
|-------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|---------------------------|------------------------------|------------------------|-------------------------------|
| Cobra Rods                    | Not Regulated                                                                                                                                                         | none         | none                      |                              | Internally             | none                          |
| Copper<br>Naphthenate -<br>2% | Regulated by Road and Rail if > 454 L PETROLEUM<br>DISTILLATES, N.O.S. (Solvent naphtha), Class 3.3, UN1268,<br>PG III (Always regulated for Air and Marine)          | Class 3      | Class 3 if<br>over 500 kg | 5 L (marine)                 | 100 L                  |                               |
| Copper<br>Naphthenate -<br>8% | Regulated by Road and Rail if > 454 L FLAMMABLE<br>LIQUID, N.O.S., solution, (naphtha, petroleum), Class 3.3,<br>UN1993, PG III (Always regulated for Air and Marine) | Class 3      | Class 3 if<br>over 500 kg | 5 L (marine)                 | 100 L                  | yes                           |
| Cop-R-Plastic                 | SODIUM FLUORIDE, mixture, Class 6.1, UN1690,<br>PG III                                                                                                                | Class 6.1    | Class 6 if<br>over 500 kg | 5 kg                         | 5 kg                   | yes                           |
| Cu-Rap 20                     | CORROSIVE SOLID, N.O.S. (ethanolamine), Class<br>8, UN1759, PG III                                                                                                    | Class 8      | Class 8 if<br>over 500 kg | 5 kg                         | 5 kg                   | yes                           |
| FluRods                       | SODIUM FLUORIDE, Class 6.1, UN1690, PG III                                                                                                                            | Class 6.1    | Class 6 if<br>over 500 kg | 5 L                          | 5 kg                   | yes                           |
| Post and Pole<br>Fume         | CORROSIVE LIQUID, BASIC, INORGANIC, N.O.S.<br>(metam sodium), Class 8, UN3266, PG III                                                                                 | Class 8      | Class 8 if<br>over 500 kg | 5 L                          | 5 L                    | yes                           |
| Woodfume                      | ENVIRONMENTALLY HAZARDOUS SUBSTANCE, LIQUID,<br>N.O.S. (metam sodium), Class 9, UN3082, PG III                                                                        | Class 9      | Class 9 if<br>over 500 kg | 5 L                          | 1 L                    | yes                           |
| Isopar M<br>(Imperial Oil)    | Not Regulated                                                                                                                                                         | none         | none                      |                              | 100 L                  | none                          |
| Paraflex (Petro-<br>Canada)   | Not Regulated                                                                                                                                                         | none         | none                      |                              | 100 L                  | none                          |
| Prelude 240                   | Not Regulated                                                                                                                                                         | none         | none                      |                              |                        | none                          |
| Dragnet FT                    | FLAMMABLE LIQUID, N.O.S.(permethrin), Class 3, UN1993, PG III                                                                                                         | Class 3      | Class 3 if<br>over 500 kg | 5 L                          | 100 L                  | yes                           |

## **1.6** Licences, Permits and Insurances

The Manitoba Hydro onsite representative must ensure that all contractor employees applying preservatives have Manitoba Agriculture Core Pesticide Certification and those applying insecticides have a Manitoba Agriculture Structural Applicator Licence which is renewed annually for a fee, and re-certified every 5 years.

Permits are required to work in provincial and federal parks. These permits must be obtained at least one week prior to work beginning within the park.

The contractor must possess General Liability Insurance, Automobile Liability Insurance, and Environmental Liability Insurance as laid out in Section 24 of the General Requirements of the tender. Only insured vehicles are to be used for pole maintenance work and vehicles must be identified with the contractor's company name.

## 1.7 Cleanup

The Manitoba Hydro onsite representative must ensure that the contractor maintains the worksite in a clean and tidy manner. If the contractor fails to keep the worksite clean, the onsite representative will write a letter to the contractor to remedy this.

The onsite representative will ensure that internal pole treatment chemicals will not be spilled on pole surfaces and preservative paste will not be visible above the paper wrap on the pole surface. As well, all preservative wastes and empty containers must be disposed of in accordance with the Manitoba Provincial Government Guidelines.

## 1.8 Biosecurity (New for 2014)

P853

All Manitoba Hydro staff and contractors who carry out work on agricultural land will:

- refer to and be aware of the Standard Operating Procedure (SOP) and this Agricultural Biosecurity policy
- be able to provide a copy of SOP to landowner or producer leasing the land, if asked, whether:
  - there is only one MH employee/contractor that individual should have a copy of SOP with them
  - there are 2 or more MH employees/contractors one individual in the group should have a copy of SOP
- be able to inform a landowner or producer leasing the land about the SOP, if asked
- Comply with requirements of SOP and this policy.

With any construction project on agricultural land, there is a potential to introduce and/or spread disease, pests and invasive plant species through the movement of people and equipment. To help protect the health and sustainability of the agricultural sector, Manitoba Hydro has approved a new Agricultural Biosecurity Corporate Policy (Policy P853). The policy explains the requirements of Business Units, staff and contractors who carry out work on agricultural land in Manitoba. Unrelated to any activities by Manitoba Hydro, The discovery in September of two canola plants infected with clubroot as a timely example of the need for vigilance. Clubroot is a serious disease affecting a number of crops grown in Manitoba, including canola. It has been present in neighbouring states and provinces for years, but this is the first time it has been confirmed on plants in Manitoba. The disease is spread through movement of soil. It can survive in the soil for up to twenty years.

Preventing the spread of clubroot between farms is one example of why it is important to have Biosecurity procedures in place. Not only does this give producers and landowners assurance that we take the issue seriously, but it also gives our staff and contractors consistent direction to make sure they are carrying out their work in a way that helps to protect Manitoba's agricultural sector." With a formal Biosecurity policy now in place, Hydro makes another progressive step in its extensive history of environmental responsibility.

Further to this policy, Business Units are also responsible for developing a Standard Operating Procedure (SOP) with specific operational requirements for their staff and contractors. At minimum, the SOP will include an assessment of the potential Biosecurity risk and suitable procedures to manage the risk.

The new policy required the input and collaboration of many different groups including Transmission, Customer Service & Distribution and Human Resources & Corporate Services.

#### 1.8.1 Customer Service and Distribution Agricultural Biosecurity SOP



Related Policies: P853 Agricultural Biosecurity G125A Point of Delivery for Intensive Livestock Operations

#### 1. PURPOSE OF THE PROCEDURE

This standard operating procedure (SOP) provides guidance for Customer Service & Distribution (CS&D) employees to assist in the prevention of spreading invasive organisms.

#### 2. SCOPE

This procedure applies to the Customer Service & Distribution Business Unit, its employees and contractors. All invasive organisms (plants, pests, disease) that pose a risk to agricultural operations are included in this procedure.

The procedure is geographically specific to:

- Land zoned for agricultural use by a provincial or municipal government, planning commission or planning district
- 2. Manitoba Hydro's service area (gas & electric)

#### 3. APPLICABILITY

The SOP is applicable when there is a reasonable risk of moving invasive organisms in soil from one location to another while performing tasks in CS&D, or at the landowner's request. Frozen, dry, or uncultivated ground poses little risk. Where possible, try to avoid wet areas or traveling through areas that contain manure.

Conditions where the SOP does not apply include:

- 1. Where land use is not zoned agricultural
- 2. When equipment only comes in contact with gravel or pavement
- 3. Where the work is carried out on a public right of way
- In emergency situations (*The Manitoba Hydro Act* will prevail in order to return services to normal operating condition)

#### 4. GENERAL INFORMATION

Agricultural biosecurity is the protection of crops and livestock systems against the threats to production from invasive organisms (disease, pests and invasive species).

Human activity is one of the factors in the spread of invasive organisms. Responsibility for the management of agricultural biosecurity rests with all stakeholders.

#### 5. RESPONSIBILITY

- All CS&D employees who carry out work on agricultural land must be aware of this Standard Operating Procedure
- Contractors (non-prime) who carry out work on agricultural land must be made aware of this Standard Operating Procedure prior to the commencement of work
- Employees from other Business Units carrying out work on behalf of CS&D will be required to follow this SOP during the course of their work
- Managers must monitor compliance with the procedure



## Procedure Agricultural Biosecurity

Document Owner: Char Gladue Last Revised: April 29, 2014 Next Revision: April 29, 2017

#### 6. PROCEDURAL INSTRUCTIONS

- Continue with the well established practice of communicating with landowners or producers prior to beginning work on or adjacent to private property. This is the landowner or producer's opportunity to voice any concerns, including those related to biosecurity.
  - · Respect the landowner or producer's written biosecurity protocol.
- 2. If a degree of elevated risk is identified (see list below) mechanical cleaning shall be performed which removes about 90% of the soil. Manitoba Hydro vehicles and equipment should enter and exit fields in a clean condition. Mechanically clean vehicles and equipment by removing visible dust, soil, and plant materials using brushes, brooms, and shovels from:
  - · interior and exterior of vehicles and equipment
  - · shovels, augers and vehicle tires
  - · clothes, personal protective equipment, and boots

Elevated risk identifiers:

- Confirmed presence of invasive species (e.g. clubroot)
- B. Extremely wet conditions with disturbed soil (significant accumulation of soil on vehicles and equipment)
- C. Work involves close contact with livestock
- D. Where there is heightened sensitivity around a particular project and/or from a particular customer or group of customers.
- RECORD the action completed related to cleaning on one of the three documents: the workorder, the job plan (tailboard), or environmental checklist.

#### 7. DISTRIBUTION, COMMUNICATION & REVIEW

The SOP will be communicated to CS&D employees and contractors as required. It is available on Manitoba Hydro's intranet and to the public upon request.

For subject matter expert guidance or questions from the public, please contact Mr. Alec Stuart, Manager, Corporate Environmental Management at <u>environment@hydro.mb.ca</u> or 204-360-3015.

This procedure will be reviewed every three years by the Division Managers of CS&D.

#### 8. PROCEDURE APPROVAL

30,2014 Date: APRIL 30/14 Signature:

G. B. Reed, Vice President, Customer Service & Distribution Business Unit

## 2. Treatments

## 2.1 Pole Inspection

The Manitoba Hydro onsite representative must ensure that the following inspection guidelines are carried out by the contractor:

a) All poles shall be:

- Tagged with a pole identification barcode if not previously tagged.
- Inspected visually above ground for obvious problems.
- Sound and bore inspected, and classified according to continued serviceability.
- Inspected below groundline externally and be classified according to continued serviceability if over 15 years in service.
- b) Danger poles and all poles with split tops shall be reported to the onsite representative immediately who will decide on the appropriate course of action.
- c) Dimensions of all hollows, voids, decay pockets, mechanical damage, external decay and remaining sound wood shall be measured and recorded as described in Appendix 7 of the tender.
- d) All 3/8" drill holes shall be flooded with a 2% copper naphthenate solution and plugged with a 7/16" diameter preservative-treated wooden plug with a minimum length of 2", or with an appropriately sized plastic plug.
- e) Poles supported with a wooden stub shall receive both stub and pole inspection to ensure the continued integrity of the structure.



First, the barcode of the pole is scanned so any data entered into the datalogger will correspond to the unique barcode number for that pole.

The contractor inspector then completes a full above ground inspection noting any obvious problems such as split tops and floating wires.





The circumference of the pole is taken to classify the pole as well as note any loss of circumference due to rotting.

All information obtained through the inspection is recorded on the data logger by the contractor inspector.



## 2.2 Pole Strength Evaluation

Poles shall be classified as SERVICEABLE (S), REJECT (X), REINFORCEABLE (XR), or DANGER (XD) based on an evaluation of the remaining pole strength using the strength assessment tables and charts found in tender or remaining strength booklet.

| Remaining Strength Categories |                                  |  |  |  |  |  |
|-------------------------------|----------------------------------|--|--|--|--|--|
| Remaining Strength            | Pole Classification              |  |  |  |  |  |
| < 50%                         | Danger Pole XD                   |  |  |  |  |  |
| 50% to 70%                    | Reject/Reinforceable Pole X / XR |  |  |  |  |  |
| > 70%                         | Serviceable Pole S               |  |  |  |  |  |

|                                          | POLE STRENGTH EVALUATION |    |           |       |                     |            |              |                   |            |                 |              |       |
|------------------------------------------|--------------------------|----|-----------|-------|---------------------|------------|--------------|-------------------|------------|-----------------|--------------|-------|
| I                                        |                          |    |           | POLE  |                     | VALUATION  |              |                   |            |                 |              |       |
| SHELL ROT: 0.5" - 3" DEEP                |                          |    |           |       |                     |            |              |                   |            |                 |              |       |
|                                          |                          |    |           | c     | GROUNDLIN           | E AREA     |              |                   |            |                 |              |       |
|                                          |                          |    |           |       |                     | DEPT       | H OF ROT [ii | n]                |            |                 |              |       |
| ORIGINAL CIRCUMFERENCE AT<br>DAMAGE [in] | 0.5                      |    |           | 1     |                     | 1.5        |              | 2                 |            | 2.5             |              | 3     |
|                                          |                          |    |           |       |                     | MAXIMUM    | WIDTH OF     | ROT [in]          |            |                 |              |       |
| 25                                       | 21.75                    | 25 | 9.25      | 21.75 | 5.75                | 19         | 4            | 9.25              | US         | E EXTERNAL      | POCKET CHART |       |
| 30                                       | 30                       | 30 | 21.5      | 27.5  | 8                   | 24.5       | 5.75         | 21                | 4.5        | 10.5            |              |       |
| 35                                       | 35                       | 35 | 27        | 33.5  | 11.25               | 30         | 8.5          | 27.25             | 6.25       | 15              | 5.25         | 12.25 |
| 40                                       | 40                       | 40 | 40        | 40    | 25.25               | 35.5       | 10.75        | 32.75             | 8.5        | 29.75           | 6.75         | 16    |
| 45                                       | 45                       | 45 | 45        | 45    | 32.25               | 41.25      | 13.75        | 38.25             | 11         | 35.5            | 8.5          | 31.5  |
| 50                                       | 50                       | 50 | 50        | 50    | 37.75               | 50         | 18.5         | 43.75             | 13.5       | 41              | 11.75        | 38    |
| 55                                       | 55                       | 55 | 55        | 55    | 43.25               | 55         | 36.5         | 49.25             | 16.5       | 46.25           | 13.75        | 43.75 |
| 60                                       | 60                       | 60 | 60        | 60    | 48.75               | 60         | 43           | 55.25             | 20.25      | 51.75           | 16.25        | 49    |
| 65                                       | 65                       | 65 | 65        | 65    | 54.5                | 65         | 48.5         | 61.25             | 37         | 57.5            | 19           | 54.5  |
| 70                                       | 70                       | 70 | 70        | 70    | 60                  | 70         | 54.25        | 70                | 47.5       | 63.25           | 22.75        | 60    |
| COLOUR CODES                             |                          |    | GREEN = S |       | [70%]<br>[E: WIDTHS | LARGER THA | N "REINFOF   | YE<br>RCE" ARE DA | LLOW = REI | NFORCE [50<br>S | %]           |       |



|                                          |                 |                              |         |          | POLE ST           | FRENGTH E       | VALUATIO  | N         | POLE STRENGTH EVALUATION |          |           |                             |                 |       |  |  |  |  |
|------------------------------------------|-----------------|------------------------------|---------|----------|-------------------|-----------------|-----------|-----------|--------------------------|----------|-----------|-----------------------------|-----------------|-------|--|--|--|--|
| ENCLOSED POCKET                          |                 |                              |         |          |                   |                 |           |           |                          |          |           | POCKET<br>DIAMET<br>SHELL 1 | Er<br>Thickness |       |  |  |  |  |
|                                          | GROUNDLINE AREA |                              |         |          |                   |                 |           |           |                          |          |           |                             |                 |       |  |  |  |  |
|                                          |                 |                              |         |          |                   |                 | SHELL T   | HICKNESS  | [in]                     |          |           |                             |                 |       |  |  |  |  |
| ORIGINAL CIRCUMFERENCE<br>AT DAMAGE [in] |                 | 0.5                          |         | 1        | :                 | 1.5             | :         | 2         | 2                        | .5       | :         | 3                           | 3               | .5    |  |  |  |  |
|                                          |                 | MAXIMUM POCKET DIAMETER [in] |         |          |                   |                 |           |           |                          |          |           |                             |                 |       |  |  |  |  |
| 25                                       | 3.25            | 5.50                         | 5.75    | 5.75     |                   |                 |           |           |                          |          |           |                             |                 |       |  |  |  |  |
| 30                                       | 3.75            | 6.00                         | 5.25    | 7.50     | 6.50              | 6.50            |           |           |                          |          |           |                             |                 |       |  |  |  |  |
| 35                                       | 4.25            | 6.50                         | 5.25    | 9.00     | 8.00              | 8.00            |           |           |                          |          |           |                             |                 |       |  |  |  |  |
| 40                                       | 4.75            | 7.25                         | 5.75    | 10.50    | 8.50              | 9.50            | 8.50      | 8.50      |                          |          |           |                             |                 |       |  |  |  |  |
| 45                                       | 5.25            | 8.00                         | 6.00    | 10.75    | 7.75              | 11.25           | 10.25     | 10.25     |                          |          |           |                             |                 |       |  |  |  |  |
| 50                                       | 5.75            | 8.50                         | 6.50    | 11.00    | 8.00              | 12.75           | 11.50     | 11.75     | 10.75                    | 10.75    |           |                             |                 |       |  |  |  |  |
| 55                                       | 6.25            | 9.25                         | 7.00    | 11.25    | 8.25              | 14.50           | 10.75     | 13.50     | 12.50                    | 12.50    |           |                             |                 |       |  |  |  |  |
| 60                                       | 6.75            | 10.00                        | 7.50    | 12.00    | 8.50              | 16.00           | 10.50     | 15.00     | 14.00                    | 14.00    | 13.00     | 13.00                       |                 |       |  |  |  |  |
| 65                                       | 7.25            | 10.75                        | 8.00    | 12.50    | 9.00              | 16.50           | 10.50     | 16.50     | 14.50                    | 15.50    | 14.50     | 14.50                       |                 |       |  |  |  |  |
| 70                                       | 7.75            | 11.50                        | 8.50    | 13.25    | 9.25              | 16.25           | 10.75     | 18.25     | 13.50                    | 17.25    | 16.25     | 16.25                       | 15.25           | 15.25 |  |  |  |  |
| COLOUR CODES                             |                 |                              | GREEN = | SERVICEA | BLE [709<br>NOTE: | 6]<br>WIDTHS LA | ARGER THA | N "REPLAC | YEL                      | LOW = RE | INFORCE/F | REPLACE [5                  | 0%]             |       |  |  |  |  |

|                                                                  |       |                           |            | POLE STRE | NGTH EVAL  | UATION   |            |            |             |            |         |       |
|------------------------------------------------------------------|-------|---------------------------|------------|-----------|------------|----------|------------|------------|-------------|------------|---------|-------|
| EXTERNAL POCKET: 0.5" - 3" DEEP<br>DEPTH UDTH<br>GROUNDLINE AREA |       |                           |            |           |            |          |            |            |             |            |         |       |
|                                                                  |       |                           |            |           |            | BOCKE.   |            |            |             |            |         |       |
| ORIGINAL CIRCUMFERENCE AT                                        | 0     | .5                        | 1          |           |            |          |            |            | 2           | .5         | 3       |       |
| DAMAGE [in]                                                      |       | MAXIMUM POCKET WIDTH [in] |            |           |            |          |            |            |             |            |         |       |
| 25                                                               | 5.5   | 7                         | 4.75       | 6.5       | 3.75       | 5.75     | 3          | 5          | 2.75        | 4.5        | 2.5     | 4.25  |
| 30                                                               | 6.75  | 8.5                       | 6.25       | 8         | 5          | 7.25     | 4.25       | 6.5        | 3.75        | 6          | 3.25    | 5.5   |
| 35                                                               | 8.25  | 10                        | 7.5        | 9.5       | 6.5        | 9        | 5.5        | 8.25       | 4.75        | 7.5        | 4.25    | 7     |
| 40                                                               | 9.5   | 11.25                     | 8.75       | 11        | 8          | 10.5     | 6.75       | 9.75       | 6           | 9          | 5.25    | 8.5   |
| 45                                                               | 10.75 | 12.75                     | 10         | 12.5      | 9.5        | 12       | 8.25       | 11.5       | 7.25        | 10.75      | 6.5     | 10    |
| 50                                                               | 12    | 14.25                     | 11.25      | 14        | 10.75      | 13.5     | 9.75       | 13         | 8.5         | 12.25      | 7.5     | 11.5  |
| 55                                                               | 13.25 | 15.75                     | 12.5       | 15.5      | 12         | 15       | 11         | 14.75      | 10          | 14         | 9       | 13.25 |
| 60                                                               | 14.5  | 17.25                     | 13.75      | 17        | 13.25      | 16.5     | 12.5       | 16.25      | 11.5        | 15.5       | 10.25   | 14.75 |
| 65                                                               | 15.75 | 18.75                     | 15         | 18.5      | 14.5       | 18       | 13.75      | 17.75      | 12.75       | 17.25      | 11.75   | 16.5  |
| 70                                                               | 17    | 20.25                     | 16.5       | 20        | 15.75      | 19.5     | 15         | 19.25      | 14.25       | 18.75      | 13      | 18    |
|                                                                  |       | GREE                      | N = SERVIC | EABLE [70 | 9%]        |          |            | YELLOV     | V = REINFOI | RCE/REPLAC | E [50%] |       |
|                                                                  |       |                           |            | NOTE:     | WIDTHS LAP | RGER THA | N "REPLACE | " ARE DANG | SER POLES   |            |         |       |

|                                          | POLE STRENGTH EVALUATION  |       |           |             |           |            |          |            |            |           |          |       |  |
|------------------------------------------|---------------------------|-------|-----------|-------------|-----------|------------|----------|------------|------------|-----------|----------|-------|--|
| DEPTH UNDTH<br>GROUNDLINE AREA           |                           |       |           |             |           |            |          |            |            |           |          |       |  |
|                                          | POCKET DEPTH [in]         |       |           |             |           |            |          |            |            |           |          |       |  |
| ORIGINAL CIRCUMFERENCE AT<br>DAMAGE [in] | 3                         | 3.5 4 |           |             | 4         | .5         |          | 5          |            | 5.5       |          | 6     |  |
|                                          | MAXIMUM POCKET WIDTH [in] |       |           |             |           |            |          |            |            |           |          |       |  |
| 25                                       | 2.25                      | 4     | 2.25      | 4           | 2.25      | 3.75       | 2.25     | 3.75       | 2          | 3.75      | 2        | 3.75  |  |
| 30                                       | 3                         | 5.25  | 2.75      | 5           | 2.75      | 4.75       | 2.75     | 4.75       | 2.75       | 4.5       | 2.5      | 4.5   |  |
| 35                                       | 3.75                      | 6.5   | 3.5       | 6.25        | 3.5       | 5.75       | 3.25     | 5.75       | 3.25       | 5.5       | 3        | 5.5   |  |
| 40                                       | 4.75                      | 8     | 4.5       | 7.5         | 4         | 7          | 4        | 6.75       | 3.75       | 6.5       | 3.75     | 6.5   |  |
| 45                                       | 5.75                      | 9.25  | 5.25      | 8.75        | 5         | 8.25       | 4.75     | 8          | 4.5        | 7.75      | 4.25     | 7.5   |  |
| 50                                       | 7                         | 11    | 6.25      | 10.25       | 5.75      | 9.75       | 5.5      | 9.25       | 5.25       | 9         | 5        | 8.75  |  |
| 55                                       | 8                         | 12.5  | 7.5       | 11.75       | 6.75      | 11.25      | 6.5      | 10.75      | 6          | 10.25     | 5.75     | 10    |  |
| 60                                       | 9.25                      | 14    | 8.5       | 13.25       | 8         | 12.75      | 7.5      | 12.25      | 7          | 11.75     | 6.75     | 11.25 |  |
| 65                                       | 10.75                     | 15.75 | 9.75      | 15          | 9         | 14.25      | 8.5      | 13.75      | 8          | 13        | 7.5      | 12.5  |  |
| 70                                       | 12                        | 17.25 | 11        | 16.5        | 10.25     | 15.75      | 9.5      | 15.25      | 9          | 14.5      | 8.5      | 14    |  |
|                                          |                           | GRI   | EEN = SER | VICEABLE [7 | 0%]       |            |          | YELLOW     | / = REINFC | RCE/REPLA | CE [50%] |       |  |
| COLOOK CODES                             |                           |       | NO        | TE: WIDTHS  | LARGER TH | AN "REINFO | RCE/REPL | ACE" ARE D | ANGER PC   | LES       |          |       |  |

|                                                                                                             |                   |            | POL                                          | STRENGT | 'H EVALUA | TION   |        |        |        |        |        |        |  |
|-------------------------------------------------------------------------------------------------------------|-------------------|------------|----------------------------------------------|---------|-----------|--------|--------|--------|--------|--------|--------|--------|--|
| Manitoba ORIGINAL_CIRCUM FERENCE   CIRCUM FERENCE CURRENT_CIRCUM FERENCE   EXTERNAL BUTT ROT CIRCUM FERENCE |                   |            |                                              |         |           |        |        |        |        |        |        |        |  |
|                                                                                                             | GROUNDLINE AREA   |            |                                              |         |           |        |        |        |        |        |        |        |  |
|                                                                                                             |                   |            | ORIGINAL POLE CIRCUMFERENCE AT DAMAGE [in]   |         |           |        |        |        |        |        |        |        |  |
|                                                                                                             | POLE STATUS       |            | 25                                           | 30      | 35        | 40     | 45     | 50     | 55     | 60     | 65     | 70     |  |
|                                                                                                             |                   | STALINGTT  | MINIMUM ALLOWABLE CURRENT CIRCUMFERENCE [in] |         |           |        |        |        |        |        |        |        |  |
|                                                                                                             | SERVICEABLE       | >70%       | 22.25                                        | 26.75   | 31.25     | 35.75  | 40.00  | 44.50  | 49.00  | 53.50  | 57.75  | 62.25  |  |
|                                                                                                             | REINFORCE/REPLACE | 50% to 70% | 20.00                                        | 24.00   | 28.00     | 31.75  | 35.75  | 39.75  | 43.75  | 47.75  | 51.75  | 55.75  |  |
| REJECT                                                                                                      | DANGER            | <50%       | <20                                          | <24     | <28       | <31.75 | <35.75 | <39.75 | <43.75 | <47.75 | <51.75 | <55.75 |  |



|                                                                                                                                                                                                 | 54 Inches above grou                                                              | und line                                                                                                                                                                                                                                                                                                                        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| le measurements based on <b>original pole</b> circumference or<br>diameter                                                                                                                      | St menes above grou                                                               |                                                                                                                                                                                                                                                                                                                                 |
| Org. Pole Diameter                                                                                                                                                                              | Org. Pole<br>Circumference                                                        | Minimum Shell Thickness at 54"                                                                                                                                                                                                                                                                                                  |
| 8" to 10.5"                                                                                                                                                                                     | 25" to 33"                                                                        | 2.5"                                                                                                                                                                                                                                                                                                                            |
| 10.5" to 13"                                                                                                                                                                                    | 33" to 41"                                                                        | 3"                                                                                                                                                                                                                                                                                                                              |
| 13" to 16"                                                                                                                                                                                      | 41" to 50"                                                                        | 3.5"                                                                                                                                                                                                                                                                                                                            |
| a                                                                                                                                                                                               |                                                                                   |                                                                                                                                                                                                                                                                                                                                 |
| Over 16"<br>In addition to reinforceable criteria table at 54 inches ab                                                                                                                         | Over 50"                                                                          | 4"<br>kness at ground line and banding locations be the <b>minimum of 2 inche</b>                                                                                                                                                                                                                                               |
| Over 16"<br>In addition to reinforceable criteria table at 54 inches ab<br>Remaining Strength Evaluation Charts                                                                                 | Over 50"<br>ove ground line the shell thic<br><b>Code</b>                         | 4"<br>kness at ground line and banding locations be the minimum of 2 inche<br>Measurements Required                                                                                                                                                                                                                             |
| Over 16"<br>In addition to reinforceable criteria table at 54 inches ab<br>Remaining Strength Evaluation Charts<br>Shell Rot                                                                    | Over 50"<br>ove ground line the shell thic<br><b>Code</b><br>SR                   | 4"<br>kness at ground line and banding locations be the <b>minimum of 2 inche</b><br><b>Measurements Required</b><br>SR(followed by Depth and Width of Rot)<br>DP( followed by Minimum shell thickness and Maximum pocket                                                                                                       |
| Over 16"<br>In addition to reinforceable criteria table at 54 inches ab<br>Remaining Strength Evaluation Charts<br>Shell Rot<br>Enclosed Decay Pocket                                           | Over 50"<br>ove ground line the shell thic<br><b>Code</b><br>SR<br>DP             | 4"<br>Ekness at ground line and banding locations be the <b>minimum of 2 inche</b><br><b>Measurements Required</b><br>SR(followed by Depth and Width of Rot)<br>DP( followed by Minimum shell thickness and Maximum pocket<br>diameter)                                                                                         |
| Over 16"<br>In addition to reinforceable criteria table at 54 inches ab<br><b>Remaining Strength Evaluation Charts</b><br>Shell Rot<br>Enclosed Decay Pocket<br>External Butt Rot               | Over 50"<br>ove ground line the shell thic<br><b>Code</b><br>SR<br>DP<br>BR       | 4"<br>Exness at ground line and banding locations be the <b>minimum of 2 inche</b><br><b>Measurements Required</b><br>SR(followed by Depth and Width of Rot)<br>DP( followed by Minimum shell thickness and Maximum pocket<br>diameter)<br>BR(followed by Current ground line circumference)                                    |
| Over 16"<br>In addition to reinforceable criteria table at 54 inches ab<br>Remaining Strength Evaluation Charts<br>Shell Rot<br>Enclosed Decay Pocket<br>External Butt Rot<br>Mechanical Damage | Over 50"<br>ove ground line the shell thic<br><b>Code</b><br>SR<br>DP<br>BR<br>MD | 4"<br>Ekness at ground line and banding locations be the <b>minimum of 2 inche</b><br><b>Measurements Required</b><br>SR(followed by Depth and Width of Rot)<br>DP( followed by Minimum shell thickness and Maximum pocket<br>diameter)<br>BR(followed by Current ground line circumference)<br>MD(followed by width of damage) |

| Additional Descriptions requiring<br>Measurements                                                                                                          |                                    |                                                                                                                                                                                                                                                                             |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Stubbing Measurement                                                                                                                                       | SM                                 | SM(followed by minimum shell thickness @ groundline plus<br>12" and 54" above grade)                                                                                                                                                                                        |
| Fire Damage (Mechanical Damage<br>or External Pocket or Shell Rot<br>Chart Used)<br>Heart Rot (Enclosed Poo<br>Internal Decay (no void) (Enclosed<br>Used) | cket Chart Used)<br>d Pocket Chart | FD(followed by evaluation chart used (appendix 8) and corresponding measurements) eg. FD/EP/4/2<br>HR( followed by Minimum shell thickness and Maximum<br>pocket diameter) eg. HR/4/3<br>ID( followed by Minimum shell thickness and Maximum pocket<br>diameter) eg. ID/1/8 |
| Additional Pole Condition<br>Descriptions                                                                                                                  | Code                               |                                                                                                                                                                                                                                                                             |
| Carpenter Ant Galleries                                                                                                                                    | CA                                 |                                                                                                                                                                                                                                                                             |
| Compression Wood                                                                                                                                           | CW                                 |                                                                                                                                                                                                                                                                             |
| Decayed Top                                                                                                                                                | DT                                 |                                                                                                                                                                                                                                                                             |
| Excessive Checking                                                                                                                                         | EC                                 |                                                                                                                                                                                                                                                                             |
| Excessive Spur Cuts Checking                                                                                                                               | SC                                 |                                                                                                                                                                                                                                                                             |
| Lightning Damage                                                                                                                                           | LD                                 |                                                                                                                                                                                                                                                                             |
| Split Top                                                                                                                                                  | ST                                 |                                                                                                                                                                                                                                                                             |
| Wind Shake                                                                                                                                                 | WS                                 |                                                                                                                                                                                                                                                                             |
| Woodpecker Holes                                                                                                                                           | WPH                                |                                                                                                                                                                                                                                                                             |

- a) Serviceable poles (S) a pole with an average minimum of 5 cm (2 inches) of shell thickness and 70% or greater of their original strength as per remaining strength evaluation charts and tables.
- b) Reject poles
  - i) Reject Pole (X) A standing pole containing defects that will render it unserviceable within the next 15 years. A pole with between 50% and 70% of its original strength and does not qualify as Reinforceable.
  - ii) Reinforceable Pole (XR) A pole retaining 50% to 70% of its original strength with a minimum of 5 cm (2 inches) of shell and qualifies under pole strength evaluation charts and tables as defined in Tender and remaining strength evaluation charts and tables and recommended thicknesses for steel truss manufacturer.
  - iii) Danger Pole (XD) A pole with 2.5 cm (1 inch) or less of shell or one that has less than 50% of its original strength.



In these two pictures we see an external

pocket. The picture on the left shows the external pocket being measured with a shell gauge for its depth while the picture on the right shows the pocket's width being measured. These measurements are then used with the circumference of the pole to determine the remaining strength in the pole and the pole classification.



In these two pictures we see an enclosed pocket being measured. The picture on the left shows the shell gauge measuring three inches of shell to the edge of the pocket. The picture on the right shows the shell gauge pushed into the pocket as far as it can go showing that the enclosed pocket is very deep.

## 2.3 Sounding

Sounding is striking the pole with a hammer to allow detection of unsound wood beneath the pole surface. Excavatable poles are sounded to a minimum 20 cm (8 inches) below groundline to 200 cm (6 feet) above groundline. Unexcavatable poles are sounded from the groundline to 200 cm (6 feet) above groundline. Where unsound wood is suspected, these areas are to be bored to assess the extent of the damage. Where hollows are found, a depth probe or shell thickness indicator shall be used to determine the size of the pocket and remaining shell thickness. A minimum of 3 borings are to be used.



When inspecting a pole that was sound tested, the pole should appear to have numerous hammer dents in the wood around the entire circumference from the groundline to at least 200 cm (6 feet). The red arrows in the pictures indicate hammer dents in the wood left from sounding the pole.



## 2.4 Boring

Boring inspection is done by drilling a minimum of three 3/8" holes into a pole at a 45° angle at or below the groundline to investigate the internal condition. The actual location of the inspection holes will vary with the surrounding soil texture with the lowest hole ranging from 10 cm (4 inches) below groundline in heavy clay soils to 25 cm (10 inches) below groundline in sandy soils. Where hollows are found, a depth probe or shell thickness indicator should be used to determine the size of the pocket and remaining shell thickness. A minimum of three borings extending below groundline to the centre of the pole constitutes one bore inspection. Bore inspections may also be conducted above the groundline of the pole if an enclosed pocket is suspected and being investigated.



When inspecting a pole that has been bored, there should be 3 plugged holes 120° apart from each other around the base of the pole at the groundline as well as above any possible hollows above groundline.

## 2.5 Fume

This treatment involves the drilling of a minimum of four 0.75 inch holes at 30° to the pole axis into the pole centre, beginning at the groundline and continuing in an upward spiral pattern. These holes are drilled into solid wood, avoiding rot pockets, checks and any other holes from which the fumigant can escape. Fumigant is then poured into the hole, and the hole is plugged. The volatile fungicide travels as a gas throughout the wood, sterilizing any decay fungi present, and preventing re-infection for many years.

Fumigant application must follow the following guidelines:

- 1. Measure the pole circumference at the groundline.
- 2. Determine the number, depth, and vertical separation of the holes to be used from the measured circumference and the following table:

|                                   | (3/4" drill bit)        |                        |
|-----------------------------------|-------------------------|------------------------|
| Pole<br>Circumference<br>(inches) | Holes<br>Number - Depth | Vertical<br>Separation |
| 0 to 34                           | 4 - 15"                 | 9"                     |
| 35 to 42                          | 6 - 15"                 | 6"                     |
| 43 to 49                          | 8 - 15"                 | 5"                     |
| 50 to 54                          | 8 - 18"                 | 5"                     |
| 55 to 60                          | 10 - 18"                | 4"                     |
| 60 plus                           | 12 - 18"                | 3"                     |

## RECOMMENDED FUME APPLICATION PATTERN

3. Using a 3/4" drill bit, drill the first hole at groundline with the drill bit set at an angle of at least 30 degrees from the pole axis, aimed at the pole centre (pith). Take care that the drill does not exit on the opposite side of the pole. The holes are then spaced horizontally around the pole in order for the upward spiral drill pattern to complete one full rotation, i.e. a 6 hole pattern would be spaced at 60 degree intervals around the pole, and an 8 hole pattern would be spaced at 45 degree intervals.

**Note:** to treat a previously fumed pole, reuse the previous drill holes wherever possible. The old hole shall be cleaned by running the same size drill bit to the proper depth. The old wooden plug shall be removed by pushing the old plug into the hole to provide a guide for the drill bit to follow the old hole. The old plug is then drilled out, cleaning the old hole. Plastic plugs can often be removed using their built in slots and threads, but may be done the same as wooden plugs if desired.

- 4. Holes should be drilled into sound wood only avoiding rot pockets, checks, ant gallery voids, and any other holes from which the fumigant could escape. If a void is encountered when drilling a hole, the hole should be plugged and another hole drilled further up, down or around the pole as appropriate.
- 5. Standing upwind, equally fill all holes to within 2" of the top. This will leave enough room to insert the plug without forcing out the fumigant. Apply only up to the maximum volume per pole allowed by the product label. DO NOT OVERFILL HOLES OR ALLOW FUMIGANT TO LEAK DOWN THE SIDE OF THE POLE.
- 6. Plug all holes with an appropriately sized plastic plug. Insert the plug carefully so that the fumigant doesn't "squirt" out.

Tag the pole at eyelevel to indicate the treatment and date. Keep records of all poles including the date, location, and volume of fumigant used.

The diagram to the right shows the basic application pattern for drilling the fume holes into the pole.



Basic Fumigant Application Pattern

The picture to the left shows two holes that are already drilled (red arrows) and a third hole being drilled above those two. The pattern follows a spiral up the pole.

The picture to the right shows a hammer and plug pounder being used to countersink an old fume plug so the hole can be reused for this retreatment.





The applicator in the picture is

filling the previously drilled holes with wood fume. He is being sure not to overfill the holes. Also note that he is wearing long sleeves and chemical resistant gloves and boots to reduce his chance of exposure to the chemical.



Overfilling holes with fumigant should be completely avoided. Fumigant on the outside of wood poles attracts rodents due to the salt content of the chemical. Rodents then gnaw on the wood creating large holes making serviceable poles, reject poles.

The picture to the left shows a pole that was internally treated with fumigant. The red arrows indicate plugged holes from fumigation. The lighter, discoloured wood below the holes is the result of fumigant that was overfilled and has leaked down the pole.

When fumigant leaks down the pole, it attracts rodents which results in a serviceable pole being turned into a

reject pole as seen in the picture to the right.

When inspecting a pole that has been fumed, there should be 4 - 12 plugged holes in an upward spiral pattern starting at the groundline depending on the size of the pole. There should be no evidence of the holes being overfilled and fumigant leaking down the outside of the pole.



## 2.6 Internal Void Flooding

Internal flooding of decay voids is done with 2% copper naphthenate in mineral spirits solution. An upward series of 10 mm holes is drilled to determine the size and location of the void and to evaluate pole strength. Preservative is pumped under pressure into the lowest hole until it runs out of the next highest hole. The hole that the preservative is running out of is plugged and additional preservative is pumped into the cavity until it runs out of the next highest hole. This procedure is continued until the cavity is filled or until a maximum of 4 litres of solution are applied. All holes shall be plugged with 7/16" diameter x 5 cm (2 inches) long treated wooden plugs, or appropriately sized plastic plugs. Fumigants alone are not sufficient to control decay around voids. Fumigant concentration drops as it reaches the surface of the internal decay pocket. The preservation level in this zone must therefore be boosted through flooding of the void with a liquid preservative.



In the picture to the left we see an inspector filling an internal void with copper Naphthenate using a pressurized tank and nozzle.

When inspecting a pole that has been treated for an internal void you should see a vertical series of plugged holes with no leaking of preservative down the side of the pole.

## 2.7 Groundline Treatment

External groundline preservative shall be a dual-biocide topical treatment applied as a "Bandage Treatment" as described on the following page. The barrier wrap shall be a minimum of 1-mil poly lined, 26-lb kraft paper, 60 cm (24 inches) in width. Before preservative is applied, all dirt and decayed wood is to be removed from the excavation

and disposed of as per Provincial and local preserved wood disposal guidelines. Pesticides shall not be applied when it is raining or to poles in standing or moving water. Poles with underground dip services shall not have a bandage treatment.

When inspecting a pole that has been groundline treated, the ground around the pole should be clean with no left over fill. The hole should be backfilled 5



cm (2 inches) above the normal groundline around the pole. The barrier wrap should be wrapped tightly around the pole and be secured. The barrier wrap should be exposed 5 cm (2 inches) above the backfill.



## 2.8 Backfilling

When backfilling the hole, all the original soil must be cleaned up from the ground around the pole and used to fill the hole. The hole should be backfilled in three stages, 1/3 of the depth at a time, followed by thorough tamping at each stage. If required extra fill may be brought on site to backfill with if there is insufficient material present. The backfilling should be 5 cm above the normal groundline around the pole and 5 cm of paper should be visible above the backfill. The site should be returned as closely as possible to the condition it was in before work was begun.



This picture shows a decent backfill. The backfill is above the normal groundline and slopes away from the pole. The backfill is also well tamped up against the pole, leaving no space between the soil and the pole. The ground around the pole is clean and appears undisturbed from its original condition. The paper is also exposed a little bit more above the backfill.


#### 2.9 Ants

All ant infested poles should be treated internally with Prelude<sup>™</sup> insecticide as per label specifications. If ants are present in the stub or abandoned pole nearby, it must be treated as well. Carpenter ant galleries are treated with a synthetic pyrethroid insecticide to control the invading ant colony, preventing further mechanical damage.

The poles are drilled several times to determine the extent of the gallery. The drill holes are flooded with a water/insecticide emulsion and then plugged. Care should be taken to ensure the entire ant gallery is flooded thoroughly.

When inspecting a pole that has been treated for ants you should see evidence of ant activity which includes sawdust around the pole or inside checks (cracks) as well as



boring holes into the wood. Typically a large check (crack) is rounded out near the groundline and used as an entrance/exit hole.

#### 2.10 Mechanical Damage



untreated wood is visible.

Mechanical damage up to 2 metres above ground that penetrates beyond the original preservative treatment (thus exposing unprotected wood) is shaved to remove loose and decayed wood and to eliminate areas that may trap water (see picture to the left). The area is then treated with a liquid 2% copper naphthenate solution. This re-establishes the preservative barrier between the wood pole and potential decay infection.

The pole strength evaluation chart should be consulted to ensure the pole is still serviceable.

When inspecting a pole that has mechanical damage, the damaged area should be clean of loose and/or decayed wood and all exposed wood should be externally treated with preservative so no

The picture to the right shows a properly treated mechanical damage. The damaged area has been cleaned so there is no loose or decayed wood. The shaved area has been thoroughly covered with copper naphthenate so no untreated wood is exposed.





Here is the same mechanical damage treated pole but viewed from the side. Here you can see there is no area available for water to collect on; the surface is smooth.



The example of mechanical damage treatment on the right is a bad example as there is some untreated wood exposed that was not covered with copper naphthenate. There are also many splinters coming off this treatment showing that the area was not properly shaved. In the side view picture you can see that the damage was

not shaved down properly so water may collect on the ledge that was left giving an entry for decay into the pole.

### 2.11 Internal Treatment of Poles in Standing Water

The wood is treated with solid boron or sodium fluoride rods. The rods dissolve in water and the preservative diffuses throughout the remaining wood, sterilizing existing internal decay infection.

When treating a pole with internal rods keep the bottom of the first set of three holes 1.5 to 2" above groundline 120° apart (this is especially critical in wet landscapes). Push three rods into each hole and plug the hole. Do not hammer the rods directly as they will break. Drill three more holes each 6" higher up the pole and centered between the original three holes at the bottom of the pole. Follow the diagram on the following page.

For an average 50" circumference pole (Line 12) insert 3 rods into each of the remaining 3 holes and plug. For an average 45" circumference pole (Line 78) insert 2 rods into each of the remaining 3 holes and plug.



Drill hole



Drop in FLUROD



Plug hole

When handling any internal treatment rods be sure that chemical resistant gloves are worn.





#### 2.12 Rock Plate Assemblies (New for 2014)

Where rock set poles are found the rock plate assemblies must be thoroughly inspected to ensure that the pole is safely anchored into the granite rock. Rusting and deterioration of these rods and plates due to corrosive soils has generated a need to closely assess and if need be replace the damaged installations.

S: \ACAD \LINEMAIN \FORST \\_ \COBRARD

**Introduction** This guide was created in order to assess and categorize the rock plates that are currently in service with Manitoba Hydro.

Over the years, the corporation has used various types and configurations of rock plate hardware to meet the needs of setting poles in stone. Rusting and deterioration of these rods and plates due to corrosive soils has generated a need to closely assess and if need be replace the damaged installations.

Information given in the following pages will enable workers to analyze the various types by using the length and size associated with installations over the years.

Any visible form of deterioration must be reported to the supervisor in charge of the area or group.

Points to consider in assessing rock set structures:

As some of these assemblies are getting quite old or may have been installed during undesirable circumstances, it is crucial to have a close look at them whenever they are unearthed or exposed.

Points to consider and make note of while doing the checks are:

1. Hardware Integrity – what has the assembly suffered over the years that would cause it to fail?

Questions to ask are:

i. Has the steel deteriorated due to corrosion?

(See example page 46 ii. Are there structural cracks in the metal or welds?

iii. Have the bolts loosened off due to pole shrinkage?

2. Rock Integrity – has the assembly been set in bedrock or a rock large enough to act as a proper anchoring point for the rock pins?

Questions to ask are:

i. Are there cracks that lead away from the drilled hole?

ii. Does the rock in the same vicinity look as if it is shale and not granite?

iii. Does the pole easily move when pushed upon?

What to look for...

3. Sulfur or Grout problems – are there problems with the way that the rock pins were fused?

Questions to ask are:

i. Was the hole properly filled to the top with either sulfur or grout during installation?

ii. Did the sulfur seep away due to cracks in rock during installation?

In most of the cases mentioned above a quick visual look is enough to check the integrity of the rock set installation.

Probing with a small rod in the fused hole would easily determine sulfuring problems.

#### ALL PROBLEMS MUST BE REPORTED TO SUPERVISOR

This is the current standard used in rock setting a pole.

All of the Characteristics of the Current Standard installations fall under the Type 1 and should be noted as such when doing the assessment and coding of any of these assemblies.



Current Standard for Rock Set Installations

**Corroded Rock Plate Assembly** 



As the picture clearly shows, the deterioration of this rock plate assembly is quite advanced and shows need for replacement.

Until such time as we can determine the residual strength of these rusted pins, the need for replacement will be assessed on an individual basis.

# Type 1



- 4 (2.5 in. X 48 in.) galvanized plate welded to 1 in. galvanized rod
- continuous 8 in. weld attaching rod to plate
- 4 ¾ in. galvanized bolts set at a 29 in. spacing

Type 2



- 4 (2.25 in. X 48 in.) galvanized plate welded to 1 in. galvanized rod
- continuous 8 in. weld attaching rod to plate
- 4 ¾ in. galvanized bolts set at a 29 in. spacing





- 4 (2.25 in. X 48 in.) black steel plate welded to 1 in. black steel rod
- continuous 8 in. weld attaching rod to plate
- 4 ¾ in. galvanized bolts set at a 29 in. spacing

# Туре 4



split weld (top and bottom) connecting plate to rod

- 4 (2.5 in. X 48 in.) black steel plate welded to 1 in. black steel rod
- 2 separate 4 in. weld areas that connect rod to plate
- 4 ¾ in galvanized bolts set at a 29 in. spacing

Type 5



- 4 (2.25 in. X 36 in.) black steel plate welded to 1 in. black steel rod
- 2 4 in. welds attaching rod to plate
- 4 ¾ in. galvanized bolts set at a 9 in. spacing

Туре 6



- 4 (1.5 in. X 36 in.) black steel rod flattened to become bolting plate
- no welds as rod is 1 piece
- 6 5/8 in. galvanized bolts set at a 12 in. spacing



## **Characteristics:**

• 4 - 48 in. galvanized pipes with welded partial collars that bolt from one to the other (making a continuous collar)

• not commonly used to date (picture taken in Flin Flon April 2005)

# 3. Materials and Tools

## 3.1 Tags

All poles that are inspected are required to have a pole identification tag with a bar code installed on the roadside at eyelevel regardless of their classification. Inspection and treatment tags should also be at eyelevel on the roadside of the pole and indicate remedial treatments received the year the work was preformed and the name of the contractor. All pole tagging and markings shall be in accordance with Manitoba Hydro standard procedures as stated in the tender in Section 6 of the Technical Requirements and Appendix 11 of the tender.

Poles to be reinforced must have a large "x" painted on them. Poles to be replaced must have a horizontal bar 5 cm (2 inches) wide painted on them. Reject poles have one blank, square aluminum tag while danger poles have two. Paint markings must be at eyelevel on the roadside of the pole below the aluminum tags. The paint must be weather resistant black.



This is an example of a normally treated pole. The circular tag at the top means that the pole was inspected as well as groundline treated. The triangular tag attached to the circular tag means that the pole was treated with fumigant. The bottom tag is the pole's barcode tag.

The pole to the right has a large black X spray painted on it to indicate that it is a re-inforceable pole. Note that the X is very large and visible from the road.





There are many tags attached to this example pole. The first marking that should be noted is the thick, black line painted below the barcode tag. This black line indicates that the pole is a reject pole. The two square, silver tags indicated by the blue arrows specify that this is a danger pole. The tag indicated by the yellow arrow is an inspection tag with a year of inspection of 2006. As the inspection tag is oval and not circular; there was no groundline treatment for this pole. The two rectangular tags sticking out of the inspection tag indicate that this pole was internally treated for carpenter ants. Finally the tag indicated by the red arrow is from a previous inspection. The tag shows that the pole was inspected and groundline treated in 1993.

All tags should follow the guidelines as laid out in the tender and on the following page. All tags must be made of aluminum, a minimum of 1/16 of an inch thick; round tags a minimum of one inch in diameter and square tags a minimum of 1.25 inches square. All lettering shall be a minimum of 1/8 of an inch in size. All pole markings shall be made on the road side with weather resistant black paint and shall be a minimum of two inches in width.

|                                                                                          | TAGGING AND P                                     | OLE MARKING SYSTEM                                                                                                                                                             |
|------------------------------------------------------------------------------------------|---------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TAGS *                                                                                   | POLE **<br>MARKINGS                               | DESCRIPTION                                                                                                                                                                    |
| O<br>YEAR                                                                                | NONE                                              | - POLE WAS INSPECTED                                                                                                                                                           |
| COMPULE<br>O<br>FEAR                                                                     | NONE                                              | <ul> <li>POLE WAS INSPECTED</li> <li>POLE WAS GROUNDLINE TREATED</li> </ul>                                                                                                    |
|                                                                                          | NONE                                              | <ul> <li>ALWAYS IN COMBINATION WITH ONE OF<br/>THE INSPECTION TAGS ABOVE</li> <li>INTERNAL VOIDS DUE TO ROT WERE<br/>PRESERVATIVE TREATED</li> </ul>                           |
|                                                                                          | AS NECESSARY<br>AS<br>DETERMINED BY<br>INSPECTION | <ul> <li>ALWAYS IN COMBINATION WITH ONE OF<br/>THE INSPECTION TAGS</li> <li>INTERNAL VOIDS DUE TO ANTS WERE<br/>INSECTICIDE TREATED</li> </ul>                                 |
| FUMIGANT                                                                                 | NONE                                              | <ul> <li>ALWAYS IN COMBINATION WITH ONE OF<br/>THE INSPECTION TAGS ABOVE</li> <li>HEARTWOOD WAS TREATED WITH A<br/>LIQUID FUMIGANT</li> </ul>                                  |
| O PAINTED ?X"<br>ON ROAD SIDE<br>OF POLE                                                 |                                                   | <ul> <li>POLE WAS INSPECTED</li> <li>POLE IS WEAKENED DUE TO ROT OR<br/>ANTS OR MECHANICAL DAMAGE</li> <li>POLE MUST BE REINFORCED</li> <li>CLIMB ONLY IF SUPPORTED</li> </ul> |
| O MARINA (MILLING)                                                                       | HORIZONTAL<br>BAR ON<br>ROAD SIDE<br>OF POLE      | <ul> <li>POLE WAS INSPECTED</li> <li>POLE WAS CLASSED AS A REJECT</li> <li>POLE MUST BE REPLACED</li> <li>DO NOT CLIMB</li> </ul>                                              |
| O         HORIZONTAL           BAR ON         BAR ON           ROAD SIDE         OF POLE |                                                   | <ul> <li>POLE WAS INSPECTED</li> <li>REPLACEMENT TO BE DONE IMMEDIATELY</li> <li>DO NOT CLIMB THIS POLE</li> </ul>                                                             |

INTEGRATED POLE MAINTENANCE PROGRAM TAGGING AND POLE MARKING SYSTEM

| CD 30-12      |                      |
|---------------|----------------------|
| Volume 1 of O | /H Standard's Manual |

## 3.2 Plugs

All wooden plugs must be a minimum of 7/16 in diameter and 5cm (2 inches) in body length. All wooden plugs must be treated with preservative. Plastic plugs are also acceptable as long as you ensure the appropriate size has been chosen.





#### 3.3 Paper

The barrier wrap used to perform the BANDAGE METHOD GROUND LINE TREATMENT which is illustrated on page 19 should be as described. A minimum of 1-mil poly lined, 26-lb kraft paper, 60 cm (24 inches) in width.





### 3.4 Tools

Tools below are typical tools used for inspection and treatment of our wood poles. First is the digging bar, second is the gas drill with two bit sizes used for bore inspections and internal floods. The last picture is of a depth probe or shell thickness indicator, used to measure the size of a internal pocket as well as the remaining shell thickness.





## 4. Administration

#### 4.1 Start-up Meetings

Prior to starting the season a start-up meeting will be held with the contractor, district staff, program coordinator and inspectors to review all technical and safety requirements.

#### 4.2 Work Clearance Requests

Work clearance requests are to be filled out by the Manitoba Hydro onsite representative and submitted to the local district each time work starts in a new district.

## 4.3 Quality Assurance Audits

Quality assurance (QA) audits will be carried out by the Inspectors on the contractor's work. These will include:

- a) inspection of all recorded data and reports against field conditions
- b) re-excavating the pole
- c) removal of the wrap and treatment
- d) complete re-inspection of the pole condition
- e) re-evaluation of the pole strength and serviceability, and
- f) evaluation of all treatments applied to the pole.

## 4.4 Accident and Spill Reporting

All injuries and chemical spills must be reported to the program coordinator and Safety Officer. Major incidents must be reported immediately and minor incidents must be included in the weekly reports to the program coordinator. In the event of a hazardous material incident (injury, spill, etc.), a Hazardous Material Incident Report (located in Appendix 6) must be completed and submitted to the program coordinator, the Corporate Hazardous Materials Officer, the Area Spill Response Coordinator, and the Responsible Line Management.

#### 4.5 Private Properties and Complaint Records

Before entering private property, the contractor needs to obtain permission from the property owner. If access is denied the Manitoba Hydro onsite representative will try to obtain permission from the property owner. If the property owner is unavailable the contractor may proceed with the work if the work is accessible. Locked property shall not be entered as per Tender.

All complaints from property owners or the public should first be directed to the contractor. If the contractor is unable to resolve the complaint the Manitoba Hydro onsite representative should step in. A record of every complaint must be kept on a Manitoba Hydro Complaint Record form found in Tender Appendix.

#### 4.6 Contact Phone Numbers

| Program Coordinator | Murray McDonnell | 360-     |
|---------------------|------------------|----------|
| Tech Support        | Ivan Gibson      | 360-4606 |
|                     | Bei Hu           | 360-6331 |

# 5. IPM Report Tool

To ensure that the customers receive uninterrupted service, existing poles need to be maintained and replaced. With the large amount of poles currently in use, it is impractical to keep individual paper records. Finding all the rotten poles after 1960 that were Danger or Stubbable would be impossible if someone had to search through boxes of pages. Making the data electronic allows Manitoba Hydro to easily organize data so that the relevant data is easily visible and accessible. The latest application version for IPM Report Tool is v1.6.

# **5.1 Starting IPM Report Tool**

To start IPM Report Tool, double click on icon shown in Figure 5.1.1



Figure 5.1.1 IPM Report Tool icon

This is the main screen of the IPM Report Tool. From here you can create and edit Daily Reports, Enter inspector Hours, and Create Reports.

| IPM Report Tool                               | × |  |  |  |  |
|-----------------------------------------------|---|--|--|--|--|
| Integrated Pole Maintenance<br>Reporting Tool |   |  |  |  |  |
| Daily Reports                                 |   |  |  |  |  |
| Inspector Hours                               |   |  |  |  |  |
| Create Reports                                |   |  |  |  |  |
| Administrator Options                         |   |  |  |  |  |
| Quit                                          |   |  |  |  |  |

Figure 5.1.2 Main Screen

#### **5.2 Entering Daily Reports**

Daily reports are used to record information about pole maintenance. Inspectors first fill out the information on paper before they enter it onto their computers. This guide will show what parts of the Daily Report sheet get entered into the IPM Report Tool.

To start entering a Daily Report into the IPM Report Tool, click on "Daily Reports" located on the main screen (**Figure 5.1.2**). A new window should appear (**Figure 5.2.1**), this is the list of all the daily reports. From here you can create a new report, edit an existing report, or delete reports. Click on the "New" button in the lower left corner.

| IPM Repo  | rt Tool          |         |           |        |          |             |           | _ 🗆 X |
|-----------|------------------|---------|-----------|--------|----------|-------------|-----------|-------|
| - Report  | Filter Options — |         |           |        |          |             |           |       |
| From:     | Tuesday ,        | April   | 01,2008 💌 | Т      | o: Tueso | day , March | 31,2009 💌 | Devet |
| District: |                  |         | •         | Statio | in:      |             | •         | Reset |
|           |                  |         |           |        |          |             |           |       |
| Date      | District         | Station | Blk       | Ins Co | omment   | Contract    | Foreman   |       |
|           |                  |         |           |        |          |             |           |       |
|           | New              |         | Edit      |        | Del      | ete         | Close     |       |
|           |                  |         |           |        |          |             |           |       |

Figure 5.2.1 Daily Reports

The Daily Report window (Figure 5.2.3) will appear. Enter information from the daily report sheet (Figure 5.2.2).

| Date:         | April 29, 2011_ | District:     | <u>38324 Stonewall</u> |
|---------------|-----------------|---------------|------------------------|
| Station Area: | 2228 komarno    | Line:         | BLK 07                 |
| Contractor:   | Interlake - PP  | Crew Foreman: | Joe Public 🖌 🖌         |

Figure 5.2.2 Daily Report Sheet

| Daily Report                                                                                                               |                                                        |
|----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|
| Miscellaneous<br>Inspector: Jon Penner                                                                                     | Report Date: Friday , April 29, 2011                   |
| Contract / Voltage<br>Contract: Interlake - PP<br>Voltage: Distribution                                                    | Location District: Stonewall Station: Komarno Block: 7 |
| There was a thunderstorm so we had to stop early         Report Information         Safety       Crew         Reject Poles | ial Usage Cancel Done                                  |

Figure 5.2.3 Report Information

When you are done entering the Report Information, click on the Safety tab at the bottom left corner. The below picture should appear. For both Accidents and Spills, click either Yes or No. If yes, fill out the Description and Persons box.

| aily Report                                                     |                                                                 |
|-----------------------------------------------------------------|-----------------------------------------------------------------|
| Accidents<br>© Yes © No<br>Date:                                | Spills<br>• Yes C No<br>Date:                                   |
| Friday , April 29, 2011                                         | Friday , April 29, 2011                                         |
| A transformer fell on Bobby's spleen                            | Jon Hancharyk spilt fume in his boots                           |
| Persons:<br>(Include Full Name, Position, and Years of Service) | Persons:<br>(Include Full Name, Position, and Years of Service) |
| Bobby Bottoms, Labourer, 5 years pole maintenance<br>experience | Jon Hancharyk, Applicator, 3 months                             |
| Report Information Safety Crew Reject Poles Material U          | sage Cancel Done                                                |

Figure 5.2.4 Safety Tab

When you are done entering safety information, click on the Crew tab at the bottom.

| Foreman        | Visual      | Sound    | GLT   | Fume  | Flood   | Ant      | Spray    | Photo   | Flu      | Rock Se | t Roc      | k Set    | New      |           |
|----------------|-------------|----------|-------|-------|---------|----------|----------|---------|----------|---------|------------|----------|----------|-----------|
|                |             |          |       |       |         |          | -12      |         |          | 0-12    | 13-        | 24       | Save     | 1         |
|                |             |          |       |       |         |          |          |         |          |         |            |          | Delete   |           |
| Crowlefo       | motion -    |          |       |       |         |          |          |         |          |         |            |          | Delete   |           |
| Foreman        | Name:       | _        |       |       |         |          |          |         | Work     | Date:   | Anril      | 27 2011  |          | -         |
| Total Me       | nhers [     |          |       |       | Aboria  | inal M   | emhers   |         | 1        |         | Hours Wo   |          |          | _         |
|                | noero. j    |          |       |       | r soong | in carry | CIIIDOIC | ·· )    |          |         | 110413 110 | intea. j |          |           |
| Productio<br>F | n<br>Report | Sound    | Groun | d _   |         | nterna   | al A     | unt F   | External | Digit   |            | Bock Set | Bock Set | Applicat  |
|                | Only a      | and Bore | Line  | "Fu   | ime     | Floor    | Trea     | tment   | Spray    | Photo   | Flu Rod    | 0 to 12  | 13 to 24 | Inspecto  |
| Unit:          | 0           | 0        | 0     |       |         | 0        |          | 0       | 0        | 0       | 0          | 0        | 0        | 0.00      |
| Hourly:        | 0           | 0        | 0     |       | 0       | 0        |          | 0       | 0        | 0       | 0          | 0        | 0        | Laboure   |
| Totals:        | 0           | 0        | 0     |       | 0       | 0        | (        | )       | 0        | 0       | 0          | 0        | 0        | 0.00      |
| Inspection     | n ———       |          |       |       |         |          |          |         |          |         |            |          |          |           |
|                | Reject      | Reinfo   | rce   | Dange | er Sei  | vicea    | ble B    | utt Rot | Hear     | t Rot   | Ant        | Other    |          | -         |
|                | (×)         |          | )     |       |         | (S)      | -<br>1 T |         |          |         | 0          |          |          | Save<br>& |
| <b>T</b> _+_!  |             |          | -     |       | - 1     | 0        |          | 0       |          |         | 0          |          |          | New       |
| i otais:       | U           | U        |       | 0     |         | U        | JL       | U       | 0        |         | U          | U        |          |           |

Figure 5.2.5 Crew Tab

Click on the "New" button on the top. You can now enter the Crew Information, Inspection and Production data. When you are done this, click on the Save button.

| Contractor: | Interlake - PP | Crew Foreman: | Joe Public |  |
|-------------|----------------|---------------|------------|--|

| Crew Members (Checkmark those qualifying as aborig | ginal)       | ): |  |
|----------------------------------------------------|--------------|----|--|
| Grabe Chartrand                                    | $\checkmark$ |    |  |
| Frank Watt                                         |              |    |  |
| Bill Fontaine                                      |              |    |  |
|                                                    |              |    |  |

Figure 5.2.6 Crew Members

| Production | (# of Poles): |
|------------|---------------|
|------------|---------------|

| Voltage      | Total<br>Poles | Report<br>Only | Sound<br>&Bore | <u>GLT</u> | Fume | Interal<br>Flood | Ant<br>Treat | Ext.<br>Spray | Digital<br>Photo | Flu<br>Rođ | Rock<br>Set<br>0-12 | Rock<br>Set<br>13-24 |
|--------------|----------------|----------------|----------------|------------|------|------------------|--------------|---------------|------------------|------------|---------------------|----------------------|
| Distribution | 37             | 0              | 37             | 2          | 14   | 1                | 1            | 10            | 1                | 1          | 2                   | 3                    |

Figure 5.2.7 Production

#### ] Inspection Results (# of Poles):

| _ |              |                           |                              |                           |                   |          |           |      |                 |
|---|--------------|---------------------------|------------------------------|---------------------------|-------------------|----------|-----------|------|-----------------|
|   | Voltage      | Regular<br>Rejects<br>(X) | Reinforce<br>Rejects<br>(XR) | Danger<br>Rejects<br>(XD) | Servicable<br>(S) | Butt Rot | Heart Rot | Ants | Other<br>Damage |
|   | Distribution | 1                         | 1                            | 1                         | 34                | 0        | 1         | 1    | 10              |

Figure 5.2.8 Inspection

| Crew List         Foreman       Visual       Sound       GLT       Fume       Flood       Ant       Spray       Photo       Flu       Pack Set       New         Save       Delete       Save       Delete       Delete       Delete       Delete         Crew Information       Foreman Name:       Joe Public <ul> <li>Work Date:</li> <li>April</li> <li>28. 2011</li> <li>Hours Worked:</li> <li>10</li> <li>Production</li> <li>Report</li> <li>Sound</li> <li>Ground</li> <li>Fume</li> <li>Internal</li> <li>Ant</li> <li>External</li> <li>Digit</li> <li>Flu Rod</li> <li>Rock Set</li> <li>Rock Set</li> <li>Applicator</li> <li>O</li> <li>O</li></ul>                                                                                                                                                                                                                                                                                               | Daily Report                                   |                                                     |                                                      |                                        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|-----------------------------------------------------|------------------------------------------------------|----------------------------------------|
| Foreman       Visual       Sound       GLT       Fume       Flood       Ant       Spray       Photo       Flu       Pack Set       Rock Set       New         Grew       Information       Save       Delete       Delete       Delete       Delete         Crew Information       Foreman Name:       Joe Public <ul> <li>Work Date:</li> <li>April</li> <li>28, 2011</li> <li>Total Members:</li> <li>Aboriginal Members:</li> <li>Hours Worked:</li> <li>10</li> <li>Production</li> <li>Report</li> <li>Sound</li> <li>Ground</li> <li>Line</li> <li>Fume</li> <li>Internal</li> <li>Ant</li> <li>External</li> <li>Digit</li> <li>Flu Rod</li> <li>Rock Set</li> <li>Rock Set Applicator</li> <li>0 to 12</li> <li>13 to 24</li> <li>Inspector</li> <li>O</li> <li></li></ul>                                                                                                                                                                                                                                                | Crew List                                      |                                                     |                                                      |                                        |
| Crew Information         Foreman Name:       Joe Public <ul> <li>Work Date:</li> <li>April 28, 2011</li> <li>Hours Worked:</li> <li>10</li> <li>Production</li> <li>Report Sound Ground Fume Internal Ant External Digit Flu Rod 0 to 12</li> <li>13 to 24 Inspector</li> <li>Unit 0</li> <li>37</li> <li>14</li> <li>1</li> <li>10</li> <li>1</li> <li>12</li> <li>3</li> <li>0.00</li> <li>0</li>         &lt;</ul>                                                                                                                                                                                                                                                                                                                                     | Foreman Visual Sound GLT Fume Floo             | d Ant Spray Photo Flu Ro                            | ck Set Rock Set                                      | New                                    |
| Delete         Crew Information         Foreman Name:       Joe Public        Work Date:       April 28, 2011         Total Members:       4       Aboriginal Members:       3       Hours Worked:       10         Production       Report       Sound       Ground       Fume       Internal       Ant       External       Digit       Flu Rod       Rock Set       Rock Set       Applicator         Unit       0       37       2       14       1       1       10       1       1       2       3       0.00         Hours/V:       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                |                                                     | 13 24                                                | Save                                   |
| Crew Information       Joe Public       Work Date:       April       28, 2011         Foreman Name:       Joe Public <ul> <li>Mours Work Date:</li> <li>April</li> <li>April</li> <li>28, 2011</li> <li>Hours Worked:</li> <li>Hours Work</li></ul> |                                                |                                                     |                                                      | Delete                                 |
| Foreman Name:       Joe Public       Work Date:       April       28, 2011         Total Members:       4       Aboriginal Members:       3       Hours Worked:       10         Production       Report       Sound       Ground       Internal       Ant       External       Digit       Flu Rod       Rock Set       Rock Set       Applicator         Unit:       0       37       2       14       1       1       10       1       2       3       0.00         Hourly:       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0 <t< td=""><td>Crew Information</td><td></td><td></td><td>001010</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Crew Information                               |                                                     |                                                      | 001010                                 |
| Total Members:       4       Aboriginal Members:       3       Hours Worked:       10         Production       Report       Sound       Ground       Internal       Ant       External       Digit       Flu Rod       Rock Set       Rock Set       Applicator         Unit:       0       37       2       14       1       1       10       1       1       2       3       0.00         Hourly:       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Foreman Name: Joe Public                       | ▼ Work Date                                         | e: April 28, 2011                                    | •                                      |
| Production         Report         Sound         Ground         Fume         Internal         Ant         External         Digit         Flu Rod         Rock Set         Rock Set         Applicator           Unit:         0         37         2         14         1         1         10         1         1         2         3         0.00           Hourly:         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Total Members: 4 Abor                          | ginal Members: 3                                    | Hours Worked: 10                                     |                                        |
| Report         Sound         Ground         Fume         Internal         Ant         External         Digit         Flu Rod         Rock Set         Rock Set         Applicator           Unit:         0         37         2         14         1         1         10         1         1         2         3         0.00           Hourly:         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 </td <td>Production</td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                             | Production                                     |                                                     |                                                      |                                        |
| Unit:       0       37       2       14       1       1       10       1       1       2       3       0.00         Hourly:       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Report Sound Ground Fume<br>Only and Bore Line | Internal Ant External D<br>Flood Treatment Spray Ph | nigit Flu Rod Rock Set Ro<br>noto Flu Rod 0 to 12 13 | ck Set Applicator<br>3 to 24 Inspector |
| Hourly:       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0 </td <td>Unit: 0 37 2 14</td> <td>1 1 10</td> <td>1 1 2</td> <td>3 0.00</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Unit: 0 37 2 14                                | 1 1 10                                              | 1 1 2                                                | 3 0.00                                 |
| Inspection         Reject         Reinforce         Danger         Serviceable         Butt Rot         Heart Rot         Ant         Other         Save & New           1         1         1         34         0         1         1         10         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Hourly: 0 0 0 0                                |                                                     | 0 0 0                                                | 0 Labourer                             |
| Inspection       Reject       Reinforce       Danger       Serviceable       Butt Rot       Heart Rot       Ant       Other       Save         1       1       1       34       0       1       1       10       Save       &         Totals:       0       0       0       0       0       0       0       0       0         Report Information       Safety       Crew       Reject Poles       Material Usage       Dange       Dange       Dange                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                |                                                     |                                                      | 0 0.00                                 |
| (X)         (XD)         (S)         Built Not         Heart Not         Ant         Other         Save<br>&<br>New           1         1         1         34         0         1         1         10         &<br>New           Totals:         0         0         0         0         0         0         0         0         0           Report Information         Safety         Crew         Reject Poles         Material Usage         Openal         Date         Dat                                                                                                                                                                                                                                                                                                                                                                                       | Inspection<br>Reject Reinforce Danger S        | erviceable number literations                       | Aut Other                                            |                                        |
| Totals:     0     0     0     0     0     0     0     0     0       Report Information     Safety     Crew     Reject Poles     Material Usage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (X) (XR) (XD)                                  | (S) Butt Rot Heart Rot                              |                                                      | Save<br>&                              |
| Report Information Safety Crew Reject Poles Material Usage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Totals: 0 0 0                                  |                                                     |                                                      | New                                    |
| Report Information Safety Crew Reject Poles Material Usage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                |                                                     |                                                      |                                        |
| Uancei Done                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Report Information Safety Crew Reject Poles    | Material Usage                                      | Cancel                                               | Done                                   |

Figure 5.2.9

Crew tab

The Crew list will update when you click the save button. This list will show all the crew for the particular District / Station / Block. To edit a crew, click on the Forman name and all the fields will load.

| Crew List - | Crew List |       |     |      |       |     |       |       |     |                    |                   |        |
|-------------|-----------|-------|-----|------|-------|-----|-------|-------|-----|--------------------|-------------------|--------|
| Foreman     | Visual    | Sound | GLT | Fume | Flood | Ant | Spray | Photo | Flu | Rock Set<br>0 - 12 | Rock Set<br>13-24 | New    |
| Joe Public  | 0         | 37    | 2   | 14   | 1     | 1   | 10    | 1     | 1   | 2                  | 3                 | Save   |
|             |           |       |     |      |       |     |       |       |     |                    |                   | Delete |

Figure 5.2.10 Crew list

When you are done editing a Crew, the below window will appear. Click Yes to save any changes, No to discard any changes, and Cancel if you accidentally clicked on something and this window appeared.





Do you want to save changes?

When you are done adding all the crews and they are saved, click on the Reject Poles tab. The top displays how many reject poles entries are needed.

| aily Report                    |               |            |            |           |        |        |
|--------------------------------|---------------|------------|------------|-----------|--------|--------|
|                                | Pole Totals – | Total      | Entered    | Remaining |        |        |
|                                | Reject:       | 1          | 0          | 1         |        |        |
|                                | Reinforce:    | 1          | 0          | 1         |        |        |
|                                | Danger:       | 1          | 0          | 1         |        |        |
| Reject Poles                   |               |            |            |           |        |        |
| Barcode 🔺 Code Numbe           | r Comments    | ;          |            |           |        | New    |
|                                |               |            |            |           |        |        |
|                                |               |            |            |           | -      | Save   |
|                                |               |            |            |           |        | Telete |
|                                |               |            |            |           |        |        |
|                                |               |            |            |           |        |        |
|                                |               |            |            |           |        |        |
|                                |               |            |            |           |        |        |
| Barcode: Pole                  | Number:       | C          | Condition: |           |        | ~      |
| Comments:                      |               |            |            |           |        |        |
| Quarter: Section:              | Tow           | nship:     | Range      | e:        |        |        |
| Report Information Safety Crew | Reject Poles  | Material U | sage       |           |        |        |
|                                |               |            |            |           | Cancel | Done   |

Figure 5.2.12 Reject Poles

| Daily Report                   |              |                    |         |                 |              |
|--------------------------------|--------------|--------------------|---------|-----------------|--------------|
|                                | Pole Totals  | Total              | Entered | Remaining       |              |
|                                | Reject:      | 1                  | 0       | 1               |              |
|                                | Reinforce.   | 1                  | 0       | 1               |              |
|                                | Danger       | 1                  | 0       | 1               |              |
| Reject Poles                   |              |                    |         |                 |              |
| Barcode 🔺 Code 🛛 Number        | Comments     |                    |         |                 | New          |
|                                |              |                    |         |                 |              |
|                                |              |                    |         |                 | Save         |
|                                |              |                    |         |                 | Delete       |
|                                |              |                    |         |                 |              |
|                                |              |                    |         |                 |              |
|                                |              |                    |         |                 |              |
| Baraada: 1111111 Dala          | Number 1     |                    |         | Davas Daiast    |              |
| Commonte: wechithy a car       | Number. ji   |                    |         | - Danger Nejeci | <u>·</u>     |
| Quarter Section:               | Tow          | nshin <sup>.</sup> |         |                 |              |
|                                |              |                    | T tungt |                 |              |
| Report Information Safety Crew | Reject Poles | Material U:        | sage    |                 | Cancel Durie |
|                                |              |                    |         |                 |              |

Click on the New button to create a new Reject Pole. Fill in the fields and then click Save.

Figure 5.2.13 Entering a Reject Pole

The Pole Totals and the Reject Poles list will update. Enter the remaining Reject Poles and then select the Materials tab.

| aily Report             |          |               |            |               |                 |     |          |
|-------------------------|----------|---------------|------------|---------------|-----------------|-----|----------|
|                         |          |               |            |               |                 |     |          |
|                         | Γ        | Pole Totals — |            |               | <u> </u>        |     |          |
|                         |          |               | Total      | Entered       | Remaining       |     |          |
|                         |          | Reject:       | 1          | 1             | 0               |     |          |
|                         |          | Reinforce:    | 1          | I.            | 0               |     |          |
|                         |          | Danger:       | 1          | 1             | 0               |     |          |
| - Beject Poles          | L        |               |            |               |                 |     |          |
| Barcode A Code          | Number   | Comments      |            |               |                 |     | New      |
| 1111111 XD              | 1        | was hit by a  | .car       |               |                 |     |          |
| 2222222 ×               | 2        |               |            |               |                 |     |          |
| 3333333 XR              | 3        |               |            |               |                 |     | Save     |
|                         |          |               |            |               |                 |     |          |
|                         |          |               |            |               |                 |     | Delete   |
|                         |          |               |            |               |                 |     |          |
|                         |          |               |            |               |                 |     |          |
|                         |          |               |            |               |                 |     |          |
|                         |          |               |            |               |                 |     |          |
| Barcode: 1111111        | Pole N   | lumber: 1     | 0          | Condition: XD | - Danger Reject |     | -        |
| Comments: was hit by    | a car    |               |            |               |                 |     |          |
| Duarter                 | Section: |               | nshin:     |               |                 |     |          |
| Gauner.                 | occion.  | 1000          | iomp.      | ridingi       |                 |     |          |
| Report Information Safe | ty Crew  | Reject Poles  | Material U | sage          |                 |     |          |
|                         |          |               |            |               |                 | Car | ICEI Dor |

Figure 5.2.14 Finished entering a Reject Pole

| Material Usa | Material Usage |               |          |        |  |  |  |  |  |
|--------------|----------------|---------------|----------|--------|--|--|--|--|--|
| Material     | Quantity       | Units         |          | New    |  |  |  |  |  |
|              |                |               |          |        |  |  |  |  |  |
|              |                |               |          | Save   |  |  |  |  |  |
|              |                |               |          | Delete |  |  |  |  |  |
|              |                |               |          |        |  |  |  |  |  |
| Material:    |                |               | <b>Y</b> |        |  |  |  |  |  |
| Quantity:    |                |               |          |        |  |  |  |  |  |
|              |                | Figure 5.2.15 |          |        |  |  |  |  |  |

When the material tab is loaded, it will appear blank like the below picture.



Click on the new button, select a material and enter the quantity of that material. Click on the Save button when you are done.

| Material Usage          |        |
|-------------------------|--------|
| Material Quantity Units | New    |
|                         |        |
|                         | Save   |
|                         |        |
|                         | Delete |
|                         |        |
| Material: Rods          |        |
| Quantity: 5 Total       |        |

Figure 5.2.16 Entering a material After saving, the Material Usage list will update.

| - Material U | Material Usage |       |        |  |  |  |  |  |  |
|--------------|----------------|-------|--------|--|--|--|--|--|--|
| Material     | Quantity       | Units | New    |  |  |  |  |  |  |
| Rods         | 5.00           | Total |        |  |  |  |  |  |  |
|              |                |       |        |  |  |  |  |  |  |
|              |                |       | Save   |  |  |  |  |  |  |
|              |                |       |        |  |  |  |  |  |  |
|              |                |       | Delete |  |  |  |  |  |  |
|              | _              |       |        |  |  |  |  |  |  |
|              |                |       |        |  |  |  |  |  |  |
| Material:    | Rods           | -     |        |  |  |  |  |  |  |
| Quantity:    | 5.00           | Total |        |  |  |  |  |  |  |
|              |                |       |        |  |  |  |  |  |  |

Figure 5.2.17 Finished entering a material

Enter the remaining materials and click the "Done" button in the lower right hand corner.

The Daily Report window will close. You can now see that the below list has been updated, showing two crews. To edit an existing Daily Report, click on a Crew and click the Edit button. To Delete a Daily Report, select a crew that belongs to the Daily Report and click Delete. Be careful when deleting, it will delete ALL Crews belonging to that Daily Report.

|   | IPM Repor  | t Tool        |                |          |       |       |               |              |            |       |
|---|------------|---------------|----------------|----------|-------|-------|---------------|--------------|------------|-------|
|   | - Report F | iller Options |                |          |       |       |               |              |            |       |
|   | From:      | Friday ,      | April 01, 2011 | -        |       | то:   | Saturday      | , March 🤇    | 31,2012 -  | Baset |
|   | District:  |               |                | •        | Stati | ion:  |               |              | •          | Masar |
| H | Dete       | District      | Parties        | DIL      | laa   | Carry |               | Cantrast     | Earaman    |       |
|   | 04/28/2011 | Stonewoll     | Komarna        | лік<br>7 | JH    | Carm  | neni          | Interlake PP | Joe Public |       |
|   |            |               |                |          |       |       |               |              |            |       |
|   |            |               |                |          |       |       |               |              |            |       |
|   |            |               |                |          |       |       |               |              |            |       |
|   |            |               |                |          |       |       |               |              |            |       |
|   |            |               |                |          |       |       |               |              |            |       |
|   |            |               |                |          |       |       |               |              |            |       |
|   |            |               |                |          |       |       |               |              |            |       |
|   |            |               |                |          |       |       |               |              |            |       |
|   |            |               |                |          |       |       |               |              |            |       |
|   |            |               |                |          |       |       |               |              |            |       |
| Ľ |            |               |                |          |       |       |               | _            |            | -     |
|   | Ne         | w Block       | Edit a Block   |          |       | l     | Delete a Bloc | ck           | Close      |       |

Figure 5.2.18 Updated Daily Report list

#### **5.3 Inspector Hours**

To keep track of your hours, click on the "Inspector Hours" button on the main screen. Select yourself from the drop-down box in the upper left corner. When you select yourself, the window should load up the first week of which hours have not been entered yet. Click on the Previous Week and Next Week buttons at the top to change weeks. When you are finished entering your hours, click on the "Done" button.

| IPM Report Tool | - Inspector Hour | s         |                   |                          |        |              |
|-----------------|------------------|-----------|-------------------|--------------------------|--------|--------------|
| Inspector:      | John Heaps       |           | •                 |                          |        |              |
| << Previous W   | /eek             | Sunday, / | April 24 - Saturo | day, May 7               |        | Next Week >> |
| Sunday          | Monday           | Tuesday   | Wednesday         | Thursday                 | Friday | Saturday     |
| 24              | 25               | 26        | 27                | 28                       | 29     | 30           |
|                 |                  |           |                   | Poles: 37<br>Hours: 4.00 |        |              |
| 1               | 2                | 3         | 4                 | 5                        | 6      | 7            |
|                 |                  |           |                   |                          |        |              |
|                 |                  |           | 1                 |                          | 1      | Done         |



#### **5.4 Create Reports**

Reports are used to view information about Reject Poles, Production and Inspection totals, cost breakdowns, or Inspector Hours in a summarized form. These reports can be viewed on the computer, printed, or emailed.

| •            | IPM Report     | Tool           |          |             |      |  |  |  |  |  |
|--------------|----------------|----------------|----------|-------------|------|--|--|--|--|--|
|              | Filter Options |                |          |             |      |  |  |  |  |  |
|              | Report:        | Crew           |          |             | -    |  |  |  |  |  |
|              | Start Date:    | Friday ,       | April    | 01, 2011    | •    |  |  |  |  |  |
|              | End Date:      | Saturday ,     | March    | 31, 2012    | •    |  |  |  |  |  |
|              | Contract:      | Interlake - PP |          |             | -    |  |  |  |  |  |
|              | District:      | Stonewall      |          |             |      |  |  |  |  |  |
|              | Station:       | Komarno        |          |             |      |  |  |  |  |  |
|              | Block:         | 7              |          |             | •    |  |  |  |  |  |
|              | Reset Filters  |                |          |             |      |  |  |  |  |  |
| View Options |                |                |          |             |      |  |  |  |  |  |
|              | V              | ïew            | Email to | o Wayne Ire | land |  |  |  |  |  |
|              | Close          |                |          |             |      |  |  |  |  |  |

Figure 5.4.1 Create Report

To create a new report, click on the Create Reports button on the main screen. This will bring up the Create Reports window, where you can choose the report type and filter options. There are six types of reports that you can choose from.

#### **Inspector Hours**

Detailed information on Inspection Hours

#### **Cost Summary**

Production / Inspection totals and a cost breakdown

#### **Reject Poles**

Details location and condition information for individual reject poles

#### Safety

Information on Accidents and Spills

#### Danger Poles

Details location and condition information for individual danger reject poles

#### Crew

Details production and Inspection information for crew

There are several filter options you can choose when making a report.

Start date and End date change the date range of information used in creating the reports. Contract selects which Company to use. District / Station / Block lets you select which area to use information from.

To view the report, click on the View button. To email the report to the IPM Program Coordinator, click the Email to Wayne Ireland button.

# **5.5 Sample Reports**

| Inspector Hours |           |         |            |           |        |  |  |
|-----------------|-----------|---------|------------|-----------|--------|--|--|
| For Days        | 4/28/2011 | through |            | 4/28/2011 |        |  |  |
|                 | Month Day |         | Inspector  | Poles     | Hours_ |  |  |
|                 | April 28  |         | John Heaps | 37        | 4.00   |  |  |

# Integrated Pole Maintenance - Cost Summary

| Contract Name: Inter | rlake - PP  |              |                     |  |
|----------------------|-------------|--------------|---------------------|--|
| Voltage: D           | istribution |              | District: Stonewall |  |
| Network: 52          | 25040       |              | Station: Komarno    |  |
| Reporting from:      | 4/1/2011    | To 3/31/2012 | Block: 7            |  |

Production Totals:

|             | Total<br>Poles | Report<br>Only | S&B   | GLT | Fume | Flood | Ant | Spray | Photo | Flu | Rock Set<br>0 to 12 | Rock Set<br>13 to 24 |
|-------------|----------------|----------------|-------|-----|------|-------|-----|-------|-------|-----|---------------------|----------------------|
| Total:      | 37             | 0              | 37    | 2   | 14   | 1     | 1   | 10    | 1     | 1   | 2                   | 3                    |
| % of Total: |                | 0%             | 100 % | 5%  | 38 % | 3%    | 3%  | 27 %  | 3%    | 3%  | 5%                  | 8%                   |

Inspection Totals:

|                   | Regular<br>Reject | Reinforceable | Danger<br>Reject | Serviceable | Butt Rot | Heart Rot | Ants | Other<br>Damage |
|-------------------|-------------------|---------------|------------------|-------------|----------|-----------|------|-----------------|
| Total Reported:   | 1                 | 1             | 1                | 34          | 0        | 1         | 1    | 10              |
| % of Total Poles: | 3%                | 3%            | 3%               | 92 %        | 0%       | 3%        | 3%   | 27 %            |

## Reject Poles:

Cost Breakdown:

|                | Total    | In Service % | % of Total | Unused |
|----------------|----------|--------------|------------|--------|
| Regular:       | 1        | 1            | 2.70 %     | 0      |
| Reinforceable: | 1        | 1            | 2.70 %     | 0      |
| Danger:        | 1        | 1            | 2.70 %     | 0      |
| Total Rejec    | t Poles: | 3            | 8.11 %     |        |

Manpower:

| ervice % of Total       | Unused | Tota               | l Manhours: | 40 |
|-------------------------|--------|--------------------|-------------|----|
| 1 2.70 % 0              |        | Total Aboriginal I | Manhours:   | 3  |
| 1 2.70 %                | 0      |                    |             |    |
| 1 2.70 %                | 0      |                    |             |    |
| 3 8.11 %                |        |                    |             |    |
| Visual Only:            | 0      |                    |             |    |
| Sound and Bore:         | 37     | \$5.70             | \$210.90    |    |
| Inspection:             | 37     | \$3.86             | \$142.82    |    |
| Ground Line:            | 2      | \$32.42            | \$64.84     |    |
| Fume:                   | 14     | \$15.88            | \$222.32    |    |
| Internal Flood:         | 1      | \$15.52            | \$15.52     |    |
| Ant Treatment:          | 1      | \$16.54            | \$16.54     |    |
| External Spray:         | 10     | \$10.83            | \$108.30    |    |
| Digit Photo:            | 1      | \$2.95             | \$2.95      |    |
| Flu Rod:                | 1      | \$17.88            | \$17.88     |    |
| Rock Set 0 to 12:       | 2      | \$20.50            | \$41.00     |    |
| Rock Set 13 to 24:      | 3      | \$41.00            | \$123.00    |    |
| Applicator / Inspector: | 0.00   | \$0.00             | \$0.00      |    |
| Labourer:               | 0.00   | \$0.00             | \$0.00      |    |

Total Cost:

\$966.07

# Integrated Pole Maintenance - Reject Pole Report

Contractor: Interlake - PP

Reporting from: 4/1/2011 to 3/31/2012

| District: Stonewall |   |         | Station: | Komarno               | Block: 7         |          |
|---------------------|---|---------|----------|-----------------------|------------------|----------|
|                     |   | Barcode | Pole #   | Qtr / Sec / Twp / Rng |                  | Comments |
| Total X :           | 1 |         |          |                       |                  |          |
|                     |   | 2222222 | 2        |                       |                  |          |
| Total XR :          | 1 |         |          |                       |                  |          |
|                     |   | 3333333 | 3        |                       |                  |          |
| Total XD :          | 1 |         |          |                       |                  |          |
|                     |   | 1111111 | 1        |                       | was hit by a car |          |

# Integrated Pole Maintenance - Safety Report

| Date: 4/29/2011 Distric | t: Stonewall                               | Station: Komarno | Block: 7 |
|-------------------------|--------------------------------------------|------------------|----------|
| Accident                | Date: 4/29/2011                            |                  |          |
| Description:            |                                            |                  |          |
| A transformer fell or   | a Bobby's spleen                           |                  |          |
| Persons<br>Involved:    |                                            |                  |          |
| Bobby Bottoms, Lab      | ourer, 5 years pole maintenance experience |                  |          |
| Spill                   | Date: 4/29/2011                            |                  |          |
| Description:            |                                            |                  |          |
| Jon Hancharyk spilt     | fume in his boots                          |                  |          |
| Persons<br>Involved:    |                                            |                  |          |

Jon Hancharyk, Applicator, 3 months
# Integrated Pole Maintenance - Danger Pole Report

Contractor: Interlake - PP

Reporting from: 4/1/2011 to 3/31/2012

| District: Stonewall | Station: Komarno |        | Komarno               | Block: 7         |  |
|---------------------|------------------|--------|-----------------------|------------------|--|
|                     | Barcode          | Pole # | Qtr / Sec / Twp / Rng | Comments         |  |
| Total Danger Reject | t Poles: 1       |        |                       |                  |  |
|                     | 1111111          | 1      |                       | was hit by a car |  |

# Integrated Pole Maintenance - Crew Report

Contractor: Interlake - PP Reporting from: 4/1/2011 to

3/31/2012

District: Stonewall Station: Komarno Block: 7

| District: Stonewal  | 1              |                 | Station: Komarno |           |                  |       | E        | Block: 7   |       |           |                     |                      |
|---------------------|----------------|-----------------|------------------|-----------|------------------|-------|----------|------------|-------|-----------|---------------------|----------------------|
| Foreman: Joe Public |                |                 | Date:            | 4/28/2011 |                  |       | Crew M   | 1embers: 4 |       |           |                     |                      |
| Inspection          | Total<br>Poles | Report<br>Only  | S&B              | GLT       | Fume             | Flood | Ant      | Spray      | Photo | Flu       | Rock Set<br>0 to 12 | Rock Set<br>13 to 24 |
| Unit                | 37             | 0               | 37               | 2         | 14               | 1     | 1        | 10         | 1     | 1         | 2                   | 3                    |
| Hourly              | 0              | 0               | 0                | 0         | 0                | 0     | 0        | 0          | 0     | 0         | 0                   | 0                    |
| Production          | Re<br>Re       | egular<br>eject | Reinforc         | eable     | Danger<br>Reject | Ser   | viceable | Butt       | Rot   | Heart Rot | Ants                | Other<br>Damage      |
|                     |                | 1               | 1                |           | 1                |       | 34       |            | 0     | 1         | 1                   | 10                   |

Asset Class Review Date: 5/17/2017

#### **Asset Strategy Review Date**: 5/17/2022

# **Asset Information**

| Asset class:           | Overhead Assets                                                                              |  |  |
|------------------------|----------------------------------------------------------------------------------------------|--|--|
| Asset sub-class:       | Anchor                                                                                       |  |  |
| Asset:                 | Power Screw                                                                                  |  |  |
| Primary function:      | Supporting structure                                                                         |  |  |
| Limiting factors:      | <ul> <li>Corrosion</li> <li>Mechanical damage</li> <li>Stress due to over tension</li> </ul> |  |  |
| Procedure documents:   | <ul> <li>No documentation current is in place for this asset.</li> </ul>                     |  |  |
| Maintenance standards: | Corporate Policy P340                                                                        |  |  |

### **Strategy Information**

**Maintenance strategy** 0 - Corrective; reactive **level:** 

Maintenance strategy drivers: Primary (choose one) Safety

#### Secondary (choose all that apply)

- □ Safety
- ⊠ Cost
- Reliability
- Environment
- Corporate Citizenship
- Legal requirements
- Executive directive



Last modified by: opreston

Asset Class Review Date: 5/17/2017

#### **Asset Strategy Review Date**: 5/17/2022

#### Asset Information

| Asset class:      | Overhead Assets                                       |
|-------------------|-------------------------------------------------------|
| Asset sub-class:  | Anchor                                                |
| Asset:            | Rock Set                                              |
| Primary function: | Supporting structure                                  |
| Limiting factors: | <ul><li>Corrosion</li><li>Mechanical damage</li></ul> |

**Procedure documents:** 

- IPM Manual (DAM Website)
- IPM Tender Agreements
- Rock set inspection procedure.

Maintenance standards:

Rock set inspection procedure.

# **Strategy Information**

Maintenance strategy 0 - Corrective; reactive level:

.

| Maintenance strategy | Primary (choose one) |
|----------------------|----------------------|
| drivers:             | Safety               |

#### Secondary (choose all that apply)

- □ Safety
- 🛛 Cost
- 🛛 Reliability
- Environment
- Corporate Citizenship
- □ Legal requirements
- Executive directive
- Other maintenance requirements
   Rock set inspection procedure in the approval process within Distribution Standards.

   Approved by
   Revisions:

   SHABAGA Member
   Revision Date: [Revision Date]

   Date:
   Merrorstore

Last modified by: opreston

Asset Class Review Date: 5/17/2017

### Asset Strategy Review Date: 5/17/2022

#### **Asset Information Overhead Assets** Asset class: Asset sub-class: Conductor Conductor Asset: **Primary function:** Power deliverv **Limiting factors:** Corrosion Mechanical damage (tree contact or ice build-up) Loading Lightning/Over voltage Salt accumulation . **Procedure documents:** Detailed Overhead Feeder Inspection Manual (DAM Website) Maintenance standards: Detailed Overhead Feeder Inspection Manual (DAM Website) **Strategy Information** Maintenance strategy 0 - Corrective; reactive level: **Primary (choose one)** Secondary (choose all that apply) Maintenance strategy drivers: Reliability $\boxtimes$ Safety $\boxtimes$ Cost Reliability $\square$ Environment **Corporate Citizenship** Legal requirements Executive directive Other maintenance It is recommended that 3/13 Steel, #9 Alloy & 2/0 Hemp Core to be evaluated for . requirements: replacement where found within the network.

• Due to the nature of overhead conductors, life cycles far exceed that of the poles supporting them. As a result, corrective strategies are sufficient for this asset.



#### Asset Class Review Date: 5/17/2017

#### Asset Strategy Review Date: 5/17/2022

#### **Asset Information**

| Asset class:           | Overhead Assets                                                          |  |  |
|------------------------|--------------------------------------------------------------------------|--|--|
| Asset sub-class:       | Cross Arms                                                               |  |  |
| Asset:                 | Fiberglass                                                               |  |  |
| Primary function:      | Supporting structure                                                     |  |  |
| Limiting factors:      | Cracking                                                                 |  |  |
| Procedure documents:   | No documentation current is in place for this asset.                     |  |  |
| Maintenance standards: | <ul> <li>No documentation current is in place for this asset.</li> </ul> |  |  |

### **Strategy Information**

Maintenance strategy 0 - Corrective; reactive level:

Maintenance strategy drivers: Primary (choose one) Reliability

### Secondary (choose all that apply)

- Safety
- 🛛 Cost
- Reliability
- Environment
- Corporate Citizenship
- □ Legal requirements
- Executive directive



Asset Class Review Date: 5/17/2017

#### **Asset Strategy Review Date:** 5/17/2022

### **Asset Information**

| Asset class:           | Overhead Assets                                                                           |  |  |
|------------------------|-------------------------------------------------------------------------------------------|--|--|
| Asset sub-class:       | Cross Arms                                                                                |  |  |
| Asset:                 | Steel                                                                                     |  |  |
| Primary function:      | Supporting structure                                                                      |  |  |
| Limiting factors:      | <ul> <li>Pole fire due to tracking along crossarm</li> <li>Corrosion (limited)</li> </ul> |  |  |
| Procedure documents:   | <ul> <li>No documentation current is in place for this asset.</li> </ul>                  |  |  |
| Maintenance standards: | <ul> <li>No documentation current is in place for this asset.</li> </ul>                  |  |  |

### **Strategy Information**

| Maintenance strategy | 0 - Corrective; reactive |  |  |  |  |
|----------------------|--------------------------|--|--|--|--|
| level:               |                          |  |  |  |  |

| Maintenance strategy | Primary (choose one) |
|----------------------|----------------------|
| drivers:             | Reliability          |

### Secondary (choose all that apply)

- Safety
- 🛛 Cost
- Reliability
- Environment
- Corporate Citizenship
- □ Legal requirements
- Executive directive



Asset Class Review Date: 5/17/2017

#### Asset Strategy Review Date: 5/17/2022

## **Asset Information**

| Asset class:           | Overhead Assets                                          |  |
|------------------------|----------------------------------------------------------|--|
| Asset sub-class:       | Cross Arms                                               |  |
| Asset:                 | Nood - Solid                                             |  |
| Primary function:      | Supporting structure                                     |  |
| Limiting factors:      | Wood degradation (rot, insect, fire)                     |  |
| Procedure documents:   | Detailed Overhead Feeder Inspection Manual (DAM Website) |  |
| Maintenance standards: | Detailed Overhead Feeder Inspection Manual (DAM Website) |  |

• Corporate Policy P340

### **Strategy Information**

**Other maintenance** 

Maintenance strategy 2 - Condition-based level:

Maintenance strategy Primary (choose one) drivers: Reliability

#### Secondary (choose all that apply)

- ⊠ Safety
- 🖂 Cost
- Reliability
- Environment
- Corporate Citizenship
- Legal requirements
- Executive directive

# Arproved by: Arproved by: Larlorlor J. D. SHABAGA Member 30036 Date Merfession

Asset Class Review Date: 5/1/2017

**Asset Strategy Review Date:** 5/2/2022

### **Asset Information**

| Asset class:                         | Underground Assets                                     |  |  |
|--------------------------------------|--------------------------------------------------------|--|--|
| Asset sub-class:                     | Padmounted Equipment                                   |  |  |
| Asset: Distribution Centre - Automat |                                                        |  |  |
| Primary function:                    | Power delivery                                         |  |  |
| Limiting factors:                    | <ul><li>Corrosion</li><li>Mechanical Failure</li></ul> |  |  |

•

•

Procedure documents:

Corporate Policy P343

- Maintenance standards:
- No formal documentation current is in place for this asset,

### **Strategy Information**

Maintenance strategy 2 - Condition-based level:

Maintenance strategy Primary (choose one) drivers: Safety

#### Secondary (choose all that apply)

- □ Safety
- Cost
- Reliability
- Environment
- Corporate Citizenship
- Legal requirements
- Executive directive

Other maintenance

• Distribution Centres are commonly referred to as DC.



Last modified by: opreston

Asset Class Review Date: 5/1/2017

**Asset Strategy Review Date:** 5/2/2022

### **Asset Information**

| Asset class:           | Underground Assets                                            |  |
|------------------------|---------------------------------------------------------------|--|
| Asset sub-class:       | Padmounted Equipment                                          |  |
| Asset:                 | Distribution Centre - Manually Operate                        |  |
| Primary function:      | Power delivery                                                |  |
| Limiting factors:      | <ul><li>Corrosion</li><li>Mechanical failure</li></ul>        |  |
| Procedure documents:   | Corporate Policy P343                                         |  |
| Maintenance standards: | • No formal documentation current is in place for this asset. |  |

### **Strategy Information**

Maintenance strategy 2 - Condition-based level:

Maintenance strategy drivers: Safety

#### Secondary (choose all that apply)

- □ Safety
- 🛛 Cost
- Reliability
- Environment
- Corporate Citizenship
- Legal requirements
- Executive directive
- **Other maintenance** Distribution Centres are commonly referred to as DC.



Last modified by: opreston

Asset Class Review Date: 5/1/2017

#### Asset Strategy Review Date: 5/2/2022

### **Asset Information**

| Asset class:           | Underground Assets                                                              |  |  |
|------------------------|---------------------------------------------------------------------------------|--|--|
| Asset sub-class:       | Ductlines                                                                       |  |  |
| Asset:                 | Ductlines                                                                       |  |  |
| Primary function:      | Supporting structure                                                            |  |  |
| Limiting factors:      | Structural degradation                                                          |  |  |
| Procedure documents:   | <ul> <li>No formal documentation current is in place for this asset.</li> </ul> |  |  |
| Maintenance standards: | <ul> <li>No formal documentation current is in place for this asset.</li> </ul> |  |  |

### **Strategy Information**

Maintenance strategy 0 - Corrective; reactive level:

Maintenance strategy Primary (choose one) drivers:

#### Secondary (choose all that apply)

- □ Safety
- Cost

- Reliability
- Environment
- □ Corporate Citizenship
- Legal requirements
  - Executive directive

Other maintenance requirements:

• A review of current maintenance practices is underway.

| SHABAGA<br>Member<br>30036   | Approved by: Revisions: | Revision Date: [Revision Date] |
|------------------------------|-------------------------|--------------------------------|
| Member<br>30036<br>MOFESSION | SHABAGA                 |                                |
| Patro Profession             | Member<br>/30036        |                                |
|                              | Pater Anoression        |                                |

Last modified by: opreston

Asset Class Review Date: 5/17/2017

### Asset Strategy Review Date: 5/17/2022

# **Asset Information**

| Asset class:                                   | Overhead Assets                                                                                       |                                                                                                                                                                            |  |  |  |  |
|------------------------------------------------|-------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Asset sub-class:                               | Grounding                                                                                             |                                                                                                                                                                            |  |  |  |  |
| Asset:                                         | Rod Assembly                                                                                          |                                                                                                                                                                            |  |  |  |  |
| Primary function:                              | Power delivery                                                                                        |                                                                                                                                                                            |  |  |  |  |
| Limiting factors:                              | <ul><li>Corrosion</li><li>Theft (of copper)</li></ul>                                                 |                                                                                                                                                                            |  |  |  |  |
| Procedure documents:                           | <ul> <li>Detailed Overhead Feed</li> <li>Grounding inspection an</li> <li>Grounding manual</li> </ul> | <ul> <li>Detailed Overhead Feeder Inspection Manual (DAM Website)</li> <li>Grounding inspection and remediation tender documents</li> <li>Grounding manual</li> </ul>      |  |  |  |  |
| Maintenance standards                          | Corporate Policy P340                                                                                 |                                                                                                                                                                            |  |  |  |  |
| Strategy Information                           | )                                                                                                     |                                                                                                                                                                            |  |  |  |  |
| Maintenance strategy<br>level:                 | 0 - Corrective; reactive                                                                              |                                                                                                                                                                            |  |  |  |  |
| Maintenance strategy                           | Primary (choose one)                                                                                  | Secondary (choose all that apply)                                                                                                                                          |  |  |  |  |
| drivers:                                       | Safety                                                                                                | <ul> <li>Safety</li> <li>Cost</li> <li>Reliability</li> <li>Environment</li> <li>Corporate Citizenship</li> <li>Legal requirements</li> <li>Executive directive</li> </ul> |  |  |  |  |
| Other maintenance<br>requirements:             | • Assembly includes rod, w                                                                            | ire and all associated hardware.                                                                                                                                           |  |  |  |  |
| Appreved by:<br>2017/07/07<br>J. D.<br>SHABAGA | Revisions:                                                                                            | Revision Date: [Revision Date]                                                                                                                                             |  |  |  |  |

Last modified by: opreston

Member

PROFESSION

69

Date:

Asset Class Review Date: 5/1/2017

# Asset Strategy Review Date: 5/2/2022

#### **Asset Information**

**Asset class: Underground Assets Asset sub-class:** Underground Cables Asset: HPPT - 115kV & Below **Primary function:** Power delivery **Limiting factors:** Oil containment integrity ٠ Oil quality (dissolved gas content) . Insulation degradation • **Procedure documents:** No formal documentation current is in place for this asset, with the exception of • SB14. **Maintenance standards:** • No formal documentation current is in place for this asset.

# **Strategy Information**

| Maintenance strategy<br>level: | 0 - Corrective; reactive |             |                               |
|--------------------------------|--------------------------|-------------|-------------------------------|
| Maintenance strategy           | Primary (choose one)     | Seco        | ndary (choose all that apply) |
| drivers:                       | Reliability              |             | Safety                        |
|                                |                          | $\boxtimes$ | Cost                          |
|                                |                          |             | Reliability                   |
|                                |                          |             | Environment                   |
|                                |                          |             | Corporate Citizenship         |
|                                |                          |             | Legal requirements            |
|                                |                          |             | Executive directive           |

#### Other maintenance requirements:

- Emergency procedure to respond to LPOF alarm can be found at the <u>High Voltage</u> <u>Oil Filled SharePoint Site.</u>
- HPPT is an abbreviation for High Pressure Pipe Type



Asset Class Review Date: 5/17/2017

### Asset Strategy Review Date: 5/17/2022

# **Asset Information**

| Asset class:                       | Overhead Assets                                                                                                                                                                      |                                                                                 |                                                                                                                                                     |
|------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| Asset sub-class:                   | Insulators                                                                                                                                                                           |                                                                                 |                                                                                                                                                     |
| Asset:                             | Insulators                                                                                                                                                                           |                                                                                 |                                                                                                                                                     |
| Primary function:                  | Supporting structure                                                                                                                                                                 |                                                                                 |                                                                                                                                                     |
| Limiting factors:                  | <ul> <li>Cracking (porcelain)</li> <li>Salt accumulation</li> <li>Tracking</li> <li>Lightning/over voltage</li> <li>Ice accumulation</li> <li>UV degradation (polymetric)</li> </ul> | er)                                                                             |                                                                                                                                                     |
| Procedure documents:               | Detailed Overhead Fee                                                                                                                                                                | der Inspection N                                                                | 1anual (DAM Website)                                                                                                                                |
| Maintenance standards              | Detailed Overhead Fee                                                                                                                                                                | der Inspection N                                                                | lanual (DAM Website)                                                                                                                                |
| Strategy Information               | ı                                                                                                                                                                                    |                                                                                 | 5                                                                                                                                                   |
| Maintenance strategy<br>level:     | 0 - Corrective; reactive                                                                                                                                                             |                                                                                 |                                                                                                                                                     |
| Maintenance strategy<br>drivers:   | <b>Primary (choose one)</b><br>Reliability                                                                                                                                           | Secor                                                                           | adary (choose all that apply)<br>Safety<br>Cost<br>Reliability<br>Environment<br>Corporate Citizenship<br>Legal requirements<br>Executive directive |
| Other maintenance<br>requirements: | <ul> <li>Some insulator washing<br/>the distribution network</li> <li>Historically near heavily<br/>electrical tracking due to</li> <li>Historically, insulators heavily</li> </ul>  | is done in an ac<br>c.<br>r trafficked roac<br>o salt spray.<br>ave been replac | l hoc fashion in various locations within<br>Is have been over insulated to mitigate<br>ced on worst performing feeders.                            |



Asset Class Review Date: 5/1/2017

#### Asset Strategy Review Date: 5/2/2022

### **Asset Information**

| Asset class:         | Underground Assets      |  |  |
|----------------------|-------------------------|--|--|
| Asset sub-class:     | Padmounted Equipment    |  |  |
| Asset:               | Junction Points         |  |  |
| Primary function:    | Power delivery          |  |  |
| Limiting factors:    | • Corrosion             |  |  |
| Procedure documents: | • Corporate Policy P343 |  |  |

Maintenance standards: •

No formal documentation current is in place for this asset.

### **Strategy Information**

Maintenance strategy 2 - Condition-based level:

#### Maintenance strategy Primary (choose one)

Safety

#### Secondary (choose all that apply)

- □ Safety
- 🛛 Cost
- 🛛 🛛 Reliability
- Environment
- Corporate Citizenship
- Legal requirements
- Executive directive

Other maintenance requirements:

drivers:

- During regular inspections, thermal graphic imaging is used to determine the connection of the cable terminations for heating.
  - Junction Points are commonly referred to as JP.



Last modified by: opreston

Asset Class Review Date: 5/1/2017

#### **Asset Strategy Review Date:** 5/2/2022

### **Asset Information**

| Asset class:           | Underground Assets                                                              |  |  |
|------------------------|---------------------------------------------------------------------------------|--|--|
| Asset sub-class:       | Underground Cables                                                              |  |  |
| Asset:                 | Low Voltage Customer Underground Cable                                          |  |  |
| Primary function:      | Power delivery                                                                  |  |  |
| Limiting factors:      | <ul> <li>Cable Insulation</li> <li>Mechanical damage</li> </ul>                 |  |  |
| Procedure documents:   | <ul> <li>No formal documentation current is in place for this asset.</li> </ul> |  |  |
| Maintenance standards: | <ul> <li>No formal documentation current is in place for this asset.</li> </ul> |  |  |

### **Strategy Information**

| Maintenance strategy | 0 - Corrective; reactive |
|----------------------|--------------------------|
| level:               |                          |

| Maintenance strategy | Primary (choose one) |
|----------------------|----------------------|
| drivers:             | Reliability          |

### Secondary (choose all that apply)

- ⊠ Safety
- 🛛 Cost
- □ Reliability
- Environment
- Corporate Citizenship
- Legal requirements
- Executive directive



Last modified by: opreston

Asset Class Review Date: 5/1/2017

#### **Asset Information**

Asset class:

Asset sub-class:

Asset:

**Primary function:** 

**Limiting factors:** 

• Oil containment integrity

**Underground Assets** 

**Underground Cables** 

LPOF 115kV & Below

Power delivery

•

•

- Oil quality (dissolved gas content)
- Insulation degradation

Procedure documents:

No formal documentation current is in place for this asset.

Maintenance standards:

No formal documentation current is in place for this asset.

### **Strategy Information**

Maintenance strategy 0 - Corrective; reactive level:

#### Maintenance strategy Primary (choose one) drivers:

Reliability

### Secondary (choose all that apply)

Asset Strategy Review Date: 5/2/2022

- □ Safety
- 🛛 Cost
- Reliability
- Environment
- Corporate Citizenship
- Legal requirements
- Executive directive

# Other maintenance requirements:

- Emergency procedure to respond to LPOF alarm can be found at the <u>High Voltage</u> <u>Oil Filled SharePoint Site.</u>
- LPOF is an abbreviation for Low Pressure Oil Filled



Asset Class Review Date: 5/1/2017

#### **Asset Strategy Review Date:** 5/2/2022

## **Asset Information**

| Asset class:           | Underground Assets                                            |  |  |
|------------------------|---------------------------------------------------------------|--|--|
| Asset sub-class:       | Manholes                                                      |  |  |
| Asset:                 | Manholes                                                      |  |  |
| Primary function:      | Supporting structure                                          |  |  |
| Limiting factors:      | Structural (concrete or rebar) degradation                    |  |  |
| Procedure documents:   | Corporate Policy P343                                         |  |  |
| Maintenance standards: | • No formal documentation current is in place for this asset. |  |  |

# **Strategy Information**

| Maintenance strategy | 2 - Condition-based |
|----------------------|---------------------|
| level:               |                     |

| Maintenance strategy | Primary (choose one)         |                 | Secondary (choose all that apply) |  |
|----------------------|------------------------------|-----------------|-----------------------------------|--|
| drivers:             | Safety                       |                 | Safety                            |  |
|                      |                              | $\boxtimes$     | Cost                              |  |
|                      | ۵                            | $\boxtimes$     | Reliability                       |  |
|                      |                              |                 | Environment                       |  |
|                      |                              |                 | Corporate Citizenship             |  |
|                      |                              |                 | Legal requirements                |  |
|                      |                              |                 | Executive directive               |  |
| Other maintenance    | • Current practice is to ass | ess the structi | ural integrity of the manhole us  |  |

Other maintenance requirements:

Current practice is to assess the structural integrity of the manhole using visual inspection methods. A new process is under development that digitally scans and quantifiably assesses the structure of the manhole using LiDAR.



Last modified by: opreston

Asset Class Review Date: 5/1/2017

#### **Asset Strategy Review Date:** 5/2/2022

# **Asset Information**

| Asset class:           | Underground Assets                                                                               |  |
|------------------------|--------------------------------------------------------------------------------------------------|--|
| Asset sub-class:       | Padmounted Equipment                                                                             |  |
| Asset:                 | Padmounted Transformer - Single Phase                                                            |  |
| Primary function:      | Power delivery                                                                                   |  |
| Limiting factors:      | <ul> <li>Oil containment integrity</li> <li>Insulation degradation</li> <li>Corrosion</li> </ul> |  |
| Procedure documents:   | Corporate Policy P343                                                                            |  |
| Maintenance standards: | • No formal documentation current is in place for this asset.                                    |  |

# **Strategy Information**

Maintenance strategy 2 - Condition-based level:

Maintenance strategy drivers: Primary (choose one) Safety

### Secondary (choose all that apply)

- □ Safety
- 🛛 Cost
- Reliability
- Environment
- Corporate Citizenship
- □ Legal requirements
- Executive directive



Last modified by: opreston

Asset Class Review Date: 5/1/2017

**Asset Strategy Review Date:** 5/2/2022

# **Asset Information**

| Asset class:           | Underground Assets                                                                               |  |
|------------------------|--------------------------------------------------------------------------------------------------|--|
| Asset sub-class:       | Padmounted Equipment                                                                             |  |
| Asset:                 | Padmounted Transformer - Three Phase                                                             |  |
| Primary function:      | Power delivery                                                                                   |  |
| Limiting factors:      | <ul> <li>Oil containment integrity</li> <li>Insulation degradation</li> <li>Corrosion</li> </ul> |  |
| Procedure documents:   | Corporate Policy P343                                                                            |  |
| Maintenance standards: | • No formal documentation current is in place for this asset.                                    |  |

## **Strategy Information**

Maintenance strategy 2 - Condition-based level:

Maintenance strategy drivers: Primary (choose one) Safety

# Secondary (choose all that apply)

- □ Safety
- 🛛 Cost
- ⊠ Reliability
- Environment
- Corporate Citizenship
- Legal requirements
- Executive directive



Last modified by: opreston

Asset Class Review Date: 5/1/2017

### **Asset Information**

| Asset class:           | Underground Assets                                                       |  |
|------------------------|--------------------------------------------------------------------------|--|
| Asset sub-class:       | Underground Cables                                                       |  |
| Asset:                 | PILC Cables                                                              |  |
| Primary function:      | Power delivery                                                           |  |
| Limiting factors:      | Cable insulation degradation                                             |  |
| Procedure documents:   | <ul> <li>No documentation current is in place for this asset.</li> </ul> |  |
| Maintenance standards: | • No documentation current is in place for this asset.                   |  |



# **Strategy Information**

| level:                             | 0 - Corrective; reactive                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                        |                               |
|------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
| Maintenance strategy               | Primary (choose one)                                                                                                                                                                                                  | Seco                                                                                                                                                                                                                                                                                                                                                                                                   | ndary (choose all that apply) |
| drivers:                           | Reliability                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                        | Safety                        |
|                                    |                                                                                                                                                                                                                       | $\boxtimes$                                                                                                                                                                                                                                                                                                                                                                                            | Cost                          |
|                                    |                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                        | Reliability                   |
|                                    | 8                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                        | Environment                   |
|                                    |                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                        | Corporate Citizenship         |
|                                    |                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                        | Legal requirements            |
|                                    |                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                        | Executive directive           |
| Other maintenance<br>requirements: | <ul> <li>Upon failure of a PILC cable<br/>TRXLPE cable using current</li> <li>Upon failure of a pothead, recable segment using equal cusing current installation st</li> <li>PILC is an abbreviation for 1</li> </ul> | Upon failure of a PILC cable segment, replace with equal or greater capacity<br>TRXLPE cable using current installation standards.<br>Upon failure of a pothead, replace termination structure and associated PILC<br>cable segment using equal or greater capacity TRXLPE cable and terminations<br>using current installation standards.<br>PILC is an abbreviation for Paper Insulated Lead Covered |                               |

Asset Strategy Review Date: 5/2/2022 1 2 2 1



Asset Class Review Date: 5/17/2017

#### Asset Strategy Review Date: 5/17/2022

# Asset Information

| Asset class:           | Overhead Assets                                                                                                            |  |
|------------------------|----------------------------------------------------------------------------------------------------------------------------|--|
| Asset sub-class:       | Poles                                                                                                                      |  |
| Asset:                 | Concrete                                                                                                                   |  |
| Primary function:      | Supporting structure                                                                                                       |  |
| Limiting factors:      | <ul> <li>Mechanical damage (vehicle, snow plow, etc.)</li> <li>Corrosion of rebar</li> <li>Concrete degradation</li> </ul> |  |
| Procedure documents:   | • No documentation current is in place for this asset.                                                                     |  |
| Maintenance standards: | No documentation current is in place for this asset.                                                                       |  |

# **Strategy Information**

| Maintenance strategy | 0 - Corrective; reactive |
|----------------------|--------------------------|
| level:               |                          |

| Maintenance strategy | Primary (choose one) |
|----------------------|----------------------|
| drivers:             | Safety               |

#### Secondary (choose all that apply)

- Safety
- $\boxtimes$ Cost
- $\boxtimes$ Reliability
- Environment
- Corporate Citizenship
- Legal requirements
- **Executive directive**

**Other maintenance** 

It is recommend that maintenance of these assets follow the guild lines set for the • maintenance of Street Light concrete bases.

requirements



Asset Class Review Date: 5/17/2017

# Asset Strategy Review Date: 5/17/2022

### **Asset Information**

Asset class: Overhead Assets
Asset sub-class: Poles

•

•

Asset: Wood - Laminated

Primary function: Supporting structure

**Limiting factors:** 

**Procedure documents:** 

• IPM Manual (DAM Website)

Wood degradation (rot, insect, fire)

Mechanical damage (vehicle, snow plow, etc.)

- Detailed Overhead Feeder Inspection Manual (DAM Website)
- IPM Tender Agreements

Maintenance standards:

- IPM Tender Agreements
- Corporate Policy P340 & P350

### **Strategy Information**

Maintenance strategy 2 - Condition-based level:

| Maintenance strategy | Primary (choose one) | Secon       | dary (choose all that apply) |
|----------------------|----------------------|-------------|------------------------------|
| drivers:             | Safety               |             | Safety                       |
|                      |                      | $\boxtimes$ | Cost                         |
|                      |                      | $\boxtimes$ | Reliability                  |
|                      |                      |             | Environment                  |

- Corporate Citizenship
- Legal requirements
- Executive directive

Other maintenance requirements:

• Pole Treatment Process flow chart and IPM Quality Assurance Process are currently under development.



Asset Class Review Date: 5/17/2017

### Asset Strategy Review Date: 5/17/2022

### **Asset Information**

| Asset class:           | Overhead Assets                                                                     |  |
|------------------------|-------------------------------------------------------------------------------------|--|
| Asset sub-class:       | Poles                                                                               |  |
| Asset:                 | Steel – Lattice Pole                                                                |  |
| Primary function:      | Supporting structure                                                                |  |
| Limiting factors:      | <ul> <li>Mechanical damage (vehicle, snow plow, etc.)</li> <li>Corrosion</li> </ul> |  |
| Procedure documents:   | <ul> <li>No documentation current is in place for this asset.</li> </ul>            |  |
| Maintenance standards: | <ul> <li>No documentation current is in place for this asset.</li> </ul>            |  |

# **Strategy Information**

| Maintenance strategy | 0 - Corrective; reactive |
|----------------------|--------------------------|
| level:               |                          |

| Maintenance strategy | Primary (choose one) |
|----------------------|----------------------|
| drivers:             | Safety               |

### Secondary (choose all that apply)

- □ Safety
- 🛛 Cost
- Reliability
- Environment
- Corporate Citizenship
- Legal requirements
- **Executive directive**



Last modified by: opreston

Asset Class Review Date: 5/17/2017

#### **Asset Strategy Review Date:** 5/17/2022

# **Asset Information**

| Asset class:           | Overhead Assets                                                                     |  |
|------------------------|-------------------------------------------------------------------------------------|--|
| Asset sub-class:       | Poles                                                                               |  |
| Asset:                 | Steel – Trolley Pole                                                                |  |
| Primary function:      | Supporting structure                                                                |  |
| Limiting factors:      | <ul> <li>Mechanical damage (vehicle, snow plow, etc.)</li> <li>Corrosion</li> </ul> |  |
| Procedure documents:   | • No documentation current is in place for this asset.                              |  |
| Maintenance standards: | • No documentation current is in place for this asset.                              |  |

### **Strategy Information**

| Maintenance strategy | 0 - Corrective; reactive |
|----------------------|--------------------------|
| level:               |                          |

| Maintenance strategy | Primary (choose one) |
|----------------------|----------------------|
| drivers:             | Safety               |

#### Secondary (choose all that apply)

- □ Safety
- ⊠ Cost
- Reliability
- Environment
- Corporate Citizenship
- □ Legal requirements
- Executive directive

Other maintenance requirements:

• These assets are located exclusively in downtown Winnipeg as they were originally installed by Winnipeg Hydro.



Last modified by: opreston

Asset Class Review Date: 5/17/2017

# Asset Strategy Review Date: 5/17/2022

# **Asset Information**

| Asset class:                   | Overhead Assets                                                                                    |                                       |                                                                                                                    |
|--------------------------------|----------------------------------------------------------------------------------------------------|---------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| Asset sub-class:               | Poles                                                                                              |                                       | · · · · · · · · · · · · · · · · · · ·                                                                              |
| Asset:                         | Wood - Solid                                                                                       |                                       |                                                                                                                    |
| Primary function:              | Supporting structure                                                                               |                                       |                                                                                                                    |
| Limiting factors:              | <ul> <li>Wood degradation (ro</li> <li>Mechanical damage (v</li> </ul>                             | t, insect, fire)<br>ehicle, snow plov | v, etc.)                                                                                                           |
| Procedure documents:           | <ul> <li>IPM Manual (DAM We</li> <li>Detailed Overhead Fee</li> <li>IPM Tender Agreemen</li> </ul> | bsite)<br>eder Inspection N<br>ts     | lanual (DAM Website)                                                                                               |
| Maintenance standards:         | <ul> <li>IPM Tender Agreemen</li> <li>Corporate Policy P340</li> </ul>                             | ts<br>& P350                          |                                                                                                                    |
| Strategy Information           | n                                                                                                  |                                       |                                                                                                                    |
| Maintenance strategy<br>level: | 2 - Condition-based                                                                                |                                       |                                                                                                                    |
| Maintenance strategy           | Primary (choose one)                                                                               | Secon                                 | dary (choose all that apply)                                                                                       |
| drivers:                       | Safety                                                                                             |                                       | Safety<br>Cost<br>Reliability<br>Environment<br>Corporate Citizenship<br>Legal requirements<br>Executive directive |
| Other maintenance              | Pole Treatment Process                                                                             | flow chart and I                      | PM Quality Assurance Process are                                                                                   |

requirements:

currently under development.

Last modified by: opreston

÷



Asset Class Review Date: 5/17/2017

#### **Asset Strategy Review Date**: 5/17/2022

### **Asset Information**

| Overhead Assets                                                                                           |
|-----------------------------------------------------------------------------------------------------------|
| Recloser                                                                                                  |
| Electronic                                                                                                |
| Power delivery                                                                                            |
| <ul> <li>Loading</li> <li>Frequency of operation &amp; Magnitude of fault current (duty cycle)</li> </ul> |
| • No documentation current is in place for this asset.                                                    |
| Corporate Policy P340                                                                                     |
|                                                                                                           |

# **Strategy Information**

Maintenance strategy 1 - Schedule-based level:

Maintenance strategy Primary (choose one) drivers: Safety

.

Secondary (choose all that apply)

- □ Safety
- 🛛 Cost
- Reliability
- Environment
- Corporate Citizenship
- Legal requirements
- Executive directive

Other maintenance requirements:

Historically, this asset has been maintained by Apparatus Maintenance Department (AMD)

Approved by: 2017 02 07 SHABAGA Member 30036 Date: Revision Date: [Revision Date]

Asset Class Review Date: 5/17/2017

#### **Asset Strategy Review Date**: 5/17/2022

#### **Asset Information**

| Asset class:         | Overhead Assets                                                                                           |   |
|----------------------|-----------------------------------------------------------------------------------------------------------|---|
| Asset sub-class:     | Recloser                                                                                                  |   |
| Asset:               | Hydraulic                                                                                                 |   |
| Primary function:    | Power delivery                                                                                            |   |
| Limiting factors:    | <ul> <li>Loading</li> <li>Frequency of operation &amp; Magnitude of fault current (duty cycle)</li> </ul> | I |
| Procedure documents: | <ul> <li>No documentation current is in place for this asset.</li> </ul>                                  |   |

Maintenance standards:

Corporate Policy P340

# **Strategy Information**

Maintenance strategy 1 - Schedule-based level:

| Maintenance strategy | Primary (choose one) |
|----------------------|----------------------|
| drivers:             | Safety               |

### Secondary (choose all that apply)

- □ Safety
- 🖾 Cost
- Reliability
- Environment
- Corporate Citizenship
- Legal requirements
- Executive directive



Asset Class Review Date: 5/1/2017

#### **Asset Strategy Review Date**: 5/2/2022

# **Asset Information**

| Asset class:           | Underground Assets                                     |  |
|------------------------|--------------------------------------------------------|--|
| Asset sub-class:       | Underground Cables                                     |  |
| Asset:                 | RINJ Cable                                             |  |
| Primary function:      | Power delivery                                         |  |
| Limiting factors:      | Cable insulation degradation                           |  |
| Procedure documents:   | • No documentation current is in place for this asset. |  |
| Maintenance standards: | • No documentation current is in place for this asset. |  |

# **Strategy Information**

| Maintenance strategy | 0 - Corrective; reactive |
|----------------------|--------------------------|
| level:               |                          |

| Maintenance strategy | Primary (choose one) |
|----------------------|----------------------|
| drivers:             | Reliability          |

#### Secondary (choose all that apply)

- □ Safety
- 🛛 Cost
- Reliability
- Environment
- Corporate Citizenship
- □ Legal requirements
- Executive directive

Other maintenance requirements:

- Upon failure of a RINJ cable segment, replace with equal or greater capacity TRXLPE cable using current installation standards.
- RINJ is an abbreviation for Rubber Insulated Neoprene Jacketed


Asset Class Review Date: 5/1/2017

#### **Asset Strategy Review Date:** 5/2/2022

### Asset Information

| Asset class:                                   | Underground Assets                                                                                                                                   |  |
|------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Asset sub-class:                               | Underground Cables                                                                                                                                   |  |
| Asset:                                         | Secondary Network Cable                                                                                                                              |  |
| Primary function:                              | Power delivery                                                                                                                                       |  |
| Limiting factors:                              | Cable Insulation                                                                                                                                     |  |
| Procedure documents:<br>Maintenance standards: | <ul> <li>No formal documentation current is in place for this asset.</li> <li>No formal documentation current is in place for this asset.</li> </ul> |  |

## **Strategy Information**

Maintenance strategy 0 - Corrective; reactive level:

Maintenance strategy **Primary (choose one)** drivers:

Safety

#### Secondary (choose all that apply)

- Safety
- $\boxtimes$ Cost
- $\boxtimes$ Reliability
- Π Environment
- **Corporate Citizenship**
- Legal requirements
- $\square$ Executive directive

Other maintenance requirements:

Failure of these cables represents a higher risk as they are contained within . confined space locations.



Last modified by: opreston

Asset Class Review Date: 5/1/2017

#### Asset Strategy Review Date: 5/2/2022

## **Asset Information**

| Asset class:           | Underground Assets                                                                                                                            |  |
|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|--|
| Asset sub-class:       | Padmounted Equipment                                                                                                                          |  |
| Asset:                 | Secondary Network Transformers                                                                                                                |  |
| Primary function:      | Power delivery                                                                                                                                |  |
| Limiting factors:      | <ul> <li>Oil containment integrity</li> <li>Insulation degradation</li> <li>Oil quality (dissolved gas content)</li> <li>Corrosion</li> </ul> |  |
| Procedure documents:   | Corporate Policy P343                                                                                                                         |  |
| Maintenance standards: | No formal documentation current                                                                                                               |  |



# **Strategy Information**

| Maintenance strategy | 2 - Condition-based |
|----------------------|---------------------|
| level:               |                     |

| Maintenance strategy<br>drivers: | Primary (choose one) | Secon       | dary (choose all that apply) |
|----------------------------------|----------------------|-------------|------------------------------|
|                                  | Safety               |             | Safety                       |
|                                  |                      | $\boxtimes$ | Cost                         |
|                                  |                      | $\boxtimes$ | Reliability                  |
|                                  |                      |             | Environment                  |
|                                  |                      |             | Corporate Citizenship        |

Legal requirements

is in place for this asset.

Executive directive

**Other maintenance** • Dissolved gas sampling is performed annually with records archived LIMS. **requirements:** 



Asset Class Review Date: 5/1/2017

#### **Asset Strategy Review Date:** 5/2/2022

### **Asset Information**

| Asset class:      | Street Light Assests                                       |
|-------------------|------------------------------------------------------------|
| Asset sub-class:  | Street Light Bases                                         |
| Asset:            | Street Light Bases                                         |
| Primary function: | Supporting structure                                       |
| Limiting factors: | <ul><li>Structural degradation</li><li>Corrosion</li></ul> |

•

•

**Procedure documents:** 

Corporate Policy P348

- Maintenance standards:
- No formal documentation current is in place for this asset.

## **Strategy Information**

Maintenance strategy 2 - Condition-based level:

Maintenance strategy Primary (choose one) drivers:

Safety

#### Secondary (choose all that apply)

- □ Safety
- 🖾 Cost
- □ Reliability
- Environment
- Corporate Citizenship
- □ Legal requirements
- Executive directive
- **Other maintenance** This asset includes both concrete pile bases and power screw bases.



Last modified by: opreston

Asset Class Review Date: 5/1/2017

#### **Asset Strategy Review Date:** 5/2/2022

## Asset Information

| Asset class:           | Street Light Assests                                                            |  |
|------------------------|---------------------------------------------------------------------------------|--|
| Asset sub-class:       | Street Light Cable                                                              |  |
| Asset:                 | Street Light Cable                                                              |  |
| Primary function:      | Power delivery                                                                  |  |
| Limiting factors:      | Cable Insulation                                                                |  |
| Procedure documents:   | • No formal documentation current is in place for this asset.                   |  |
| Maintenance standards: | <ul> <li>No formal documentation current is in place for this asset.</li> </ul> |  |

## **Strategy Information**

Maintenance strategy 0 - Corrective; reactive level:

Maintenance strategy<br/>drivers:Primary (choose one)<br/>Corporate Citizenship

#### Secondary (choose all that apply)

- Safety
- 🛛 Cost
- Reliability
- Environment
- Corporate Citizenship
- Legal requirements
- Executive directive

### Other maintenance requirements:

| Approved by      |            | Revisions: | Revision Date: [Revision Date]                                                                                   |
|------------------|------------|------------|------------------------------------------------------------------------------------------------------------------|
| 1 Stanlar        | 6          |            |                                                                                                                  |
| S PLOIDINS /     | - W        |            |                                                                                                                  |
|                  | <b>\ \</b> |            |                                                                                                                  |
| SHABAGA          | 12         |            |                                                                                                                  |
| Member           | / 24       |            |                                                                                                                  |
| 20036            | S A        |            |                                                                                                                  |
| P. A.            | 5#         |            |                                                                                                                  |
| Date: PROFISSION |            |            |                                                                                                                  |
|                  |            |            | and the second |
|                  |            |            |                                                                                                                  |

Last modified by: opreston

Asset Class Review Date: 5/1/2017

Asset Strategy Review Date: 5/2/2022

#### **Asset Information**

| Asset class:      | Street Light Assests                                                                 |  |
|-------------------|--------------------------------------------------------------------------------------|--|
| Asset sub-class:  | Street Light Standards                                                               |  |
| Asset:            | Street Light Standards                                                               |  |
| Primary function: | Supporting structure                                                                 |  |
| Limiting factors: | <ul><li>Structural degradation</li><li>Corrosion</li><li>Mechanical damage</li></ul> |  |

Procedure documents: • Corporate Policy P348

Maintenance standards: • No formal documentation current is in place for this asset.

## **Strategy Information**

Maintenance strategy 2 - Condition-based level:

Maintenance strategy drivers: Safety

#### Secondary (choose all that apply)

- □ Safety
- 🛛 Cost
- Reliability
- Environment
- Corporate Citizenship
- Legal requirements
- Executive directive

 

 Other maintenance requirements:
 • Some standards within this asset class are direct buried.

 Opproved by:
 • Revisions:

 SHABAGA Member
 Revision Date: [Revision Date]

 Date
 Miffsstude

Last modified by: opreston

Asset Class Review Date: 5/17/2017

#### Asset Strategy Review Date: 5/17/2022

## Asset Information

| Asset class:           | Overhead Assets                                               |  |
|------------------------|---------------------------------------------------------------|--|
| Asset sub-class:       | Switches                                                      |  |
| Asset:                 | Air Break                                                     |  |
| Primary function:      | Power delivery                                                |  |
| Limiting factors:      | <ul><li>Frequency of operation</li><li>Load current</li></ul> |  |
| Procedure documents:   | Detailed Overhead Feeder Inspection Manual (DAM Website)      |  |
| Maintenance standards: | Corporate Policy P340                                         |  |

#### **Strategy Information**

Maintenance strategy 0 - Corrective; reactive level:

Maintenance strategy Primary (choose one) drivers:

Safety

#### Secondary (choose all that apply)

- Safety
- $\boxtimes$ Cost
- $\boxtimes$ Reliability
- Environment
- **Corporate Citizenship**
- Legal requirements
- **Executive directive**



Last modified by: opreston

Asset Class Review Date: 5/17/2017

#### Asset Strategy Review Date: 5/17/2022

## Asset Information

| Asset class:           | Overhead Assets                                                              |  |
|------------------------|------------------------------------------------------------------------------|--|
| Asset sub-class:       | Switches                                                                     |  |
| Asset:                 | Vac Rupters                                                                  |  |
| Primary function:      | Power delivery                                                               |  |
| Limiting factors:      | <ul><li>Frequency of operation</li><li>Load current</li></ul>                |  |
| Procedure documents:   | <ul> <li>Detailed Overhead Feeder Inspection Manual (DAM Website)</li> </ul> |  |
| Maintenance standards: | Corporate Policy P340                                                        |  |

# **Strategy Information**

| Maintenance strategy | 0 - Corrective; reactive |
|----------------------|--------------------------|
| level:               |                          |

| Maintenance strategy | Primary (choose one) |
|----------------------|----------------------|
| drivers:             | Safety               |

## Secondary (choose all that apply)

- Safety
- $\boxtimes$ Cost
- $\boxtimes$ Reliability
- Environment
- $\Box$ **Corporate Citizenship**
- Legal requirements
- Executive directive

**Other maintenance** requirements:

Apperatus Maintenance Department (AMD) has similar devices within areas of . responcibility.



Last modified by: opreston

Asset Class Review Date: 5/17/2017

# Asset Strategy Review Date: 5/17/2022

#### **Asset Information**

- Asset class:
- Asset sub-class:

Asset:

Primary function:

**Limiting factors:** 

- Load current
- Corrosion

**Overhead Assets** 

Transformers

Transformers

Power delivery

•

- Over voltages
- Oil Leaks
- External contacts (wild life)

**Procedure documents:** 

- Detailed Overhead Feeder Inspection Manual (DAM Website)
- Overload transformer reports

Maintenance standards:

Corporate Policy P340

## **Strategy Information**

| Maintenance strategy<br>level:   | 0 - Corrective; reactive |                                   |
|----------------------------------|--------------------------|-----------------------------------|
| Maintenance strategy<br>drivers: | Primary (choose one)     | Secondary (choose all that apply) |
|                                  | Reliability              | ⊠ Safety                          |
|                                  |                          | 🖾 Cost                            |
|                                  |                          | Reliability                       |
|                                  |                          | Environment                       |
|                                  |                          | Corporate Citizenship             |
|                                  |                          | Legal requirements                |
|                                  |                          | Executive directive               |

Other maintenance requirements:

• It is recommended that bird guards to be installed on the bushings of these units as a standard process in relation to transformer replacement.



Asset Class Review Date: 5/1/2017

## Asset Strategy Review Date: 5/2/2022

## **Asset Information**

| Asset class:           | Underground Assets                                     |  |  |
|------------------------|--------------------------------------------------------|--|--|
| Asset sub-class:       | Underground Cables                                     |  |  |
| Asset:                 | TRXLPE Cable                                           |  |  |
| Primary function:      | Power delivery                                         |  |  |
| Limiting factors:      | Cable insulation degradation                           |  |  |
| Procedure documents:   | • No documentation current is in place for this asset. |  |  |
| Maintenance standards: | • No documentation current is in place for this asset. |  |  |

# **Strategy Information**

| Maintenance strategy level:        | 0 - Corrective; reactive                                                                                                                     |                                                     |                                                                                                                                  |  |  |
|------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|--|--|
| Maintenance strategy               | Primary (choose one)                                                                                                                         | Seco                                                | Secondary (choose all that apply)                                                                                                |  |  |
| drivers:                           | Reliability                                                                                                                                  |                                                     | Safety                                                                                                                           |  |  |
|                                    |                                                                                                                                              | $\boxtimes$                                         | Cost                                                                                                                             |  |  |
|                                    |                                                                                                                                              |                                                     | Reliability                                                                                                                      |  |  |
|                                    |                                                                                                                                              |                                                     | Environment                                                                                                                      |  |  |
|                                    |                                                                                                                                              |                                                     | Corporate Citizenship                                                                                                            |  |  |
|                                    |                                                                                                                                              |                                                     | Legal requirements                                                                                                               |  |  |
|                                    |                                                                                                                                              |                                                     | Executive directive                                                                                                              |  |  |
| Other maintenance<br>requirements: | <ul> <li>Upon failure of a TRXLPF<br/>two times (if possible) ar<br/>equal or greater capacity</li> <li>TRXLPF is an abbreviation</li> </ul> | E cable segmer<br>nd put back int<br>v TRXLPE cable | at, the cable segment can be splice up to<br>to service prior to being replaced with<br>to using current installation standards. |  |  |
|                                    |                                                                                                                                              |                                                     | araant oross blink roly Ethanne.                                                                                                 |  |  |



Last modified by: opreston

Asset Class Review Date: 5/1/2017

#### **Asset Strategy Review Date:** 5/2/2022

## **Asset Information**

| Asset class:           | Underground Assets                                                                               |  |  |
|------------------------|--------------------------------------------------------------------------------------------------|--|--|
| Asset sub-class:       | Padmounted Equipment                                                                             |  |  |
| Asset:                 | Vault Transformers                                                                               |  |  |
| Primary function:      | Power delivery                                                                                   |  |  |
| Limiting factors:      | <ul> <li>Oil containment integrity</li> <li>Insulation degradation</li> <li>Corrosion</li> </ul> |  |  |
| Procedure documents:   | Corporate Policy P343                                                                            |  |  |
| Maintenance standards: | <ul> <li>No formal documentation current is in place for this asset.</li> </ul>                  |  |  |

## **Strategy Information**

| Maintenance strategy | 2 - Condition-based |
|----------------------|---------------------|
| level:               |                     |

| Maintenance strategy | Primary (choose one) |  |  |  |
|----------------------|----------------------|--|--|--|
| drivers:             | Reliability          |  |  |  |

#### Secondary (choose all that apply)

- Safety
- 🖾 Cost
- □ Reliability
- Environment
- Corporate Citizenship
- Legal requirements
- Executive directive



Last modified by: opreston

Asset Class Review Date: 5/1/2017

## Asset Strategy Review Date: 5/2/2022

#### **Asset Information**

| Asset class:      | Underground Assets           |  |  |
|-------------------|------------------------------|--|--|
| Asset sub-class:  | Underground Cables           |  |  |
| Asset:            | 66kV XLPE Cable              |  |  |
| Primary function: | Power delivery               |  |  |
| Limiting factors: | Cable insulation degradation |  |  |
|                   |                              |  |  |

•

- Procedure documents:
- No formal documentation current is in place for this asset.
- Maintenance standards:
- No formal documentation current is in place for this asset.

## **Strategy Information**

| Maintenance strategy level:        | 0 - Corrective; reactive                                          |                          |                                                                                          |  |  |  |
|------------------------------------|-------------------------------------------------------------------|--------------------------|------------------------------------------------------------------------------------------|--|--|--|
| Maintenance strategy               | Primary (choose one)                                              | Seco                     | Secondary (choose all that apply)                                                        |  |  |  |
| drivers:                           | Reliability                                                       |                          | Safety                                                                                   |  |  |  |
|                                    |                                                                   | $\boxtimes$              | Cost                                                                                     |  |  |  |
|                                    |                                                                   |                          | Reliability                                                                              |  |  |  |
|                                    |                                                                   |                          | Environment                                                                              |  |  |  |
|                                    |                                                                   |                          | Corporate Citizenship                                                                    |  |  |  |
|                                    |                                                                   |                          | Legal requirements                                                                       |  |  |  |
|                                    |                                                                   |                          | Executive directive                                                                      |  |  |  |
| Other maintenance<br>requirements: | • This is a difficult cable type to schedule and the procedure is | test as ti<br>s very lab | he associated outages are very difficult to<br>our intensive and complicated. In additic |  |  |  |

- schedule and the procedure is very labour intensive and complicated. In addition to this, the risk of damage to the cable insulation as a result of this test is high and cable replacement costs are high with lengthy lead times for ordering. As a result of this, cable testing for this cable type is very impractical.
  - XLPE is an abbreviation for Cross Link Poly Ethaline.



Asset Class Review Date: 5/1/2017

#### **Asset Strategy Review Date**: 5/2/2022

#### **Asset Information**

| Asset class:      | Underground Assets           |  |  |
|-------------------|------------------------------|--|--|
| Asset sub-class:  | Underground Cables           |  |  |
| Asset:            | XLPE Cable                   |  |  |
| Primary function: | Power delivery               |  |  |
| Limiting factors: | Cable insulation degradation |  |  |
|                   |                              |  |  |



Procedure documents:

- No formal documentation current is in place for this asset; however, reference information can be found in the following papers:
  - IEEE Guide for Field Testing of Shielded Power Cable Systems Using Very Low Frequency (VLF)
  - XLPE Cable Rehabilitation Program A Summary of the Development and Implementation of Manitoba Hydro's Underground Cable Rehabilitation Program.

Maintenance standards:

• XLPE cable segments at tested to IEEE Standard 400-2 standards using VLF Dissipation Factor (Tan Delta) Measurement

## **Strategy Information**

| Maintenance strategy<br>level:     | 2 - Condition-based                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                      |                                   |  |  |
|------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|--|--|
| Maintenance strategy               | Primary (choose one)                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                      | Secondary (choose all that apply) |  |  |
| drivers:                           | Cost                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                      | Safety                            |  |  |
|                                    |                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                      | Cost                              |  |  |
|                                    |                                                                                                                                                       | $\boxtimes$                                                                                                                                                                                                                                                                                                                                          | Reliability                       |  |  |
|                                    |                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                      | Environment                       |  |  |
|                                    |                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                      | Corporate Citizenship             |  |  |
|                                    |                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                      | Legal requirements                |  |  |
|                                    |                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                      | Executive directive               |  |  |
| Other maintenance<br>requirements: | <ul> <li>Upon failure of a XLP<br/>Coordinator to assess<br/>put back into service<br/>using current installa</li> <li>Further information</li> </ul> | pon failure of a XLPE cable segment, contact the DAM Underground<br>oordinator to assess cable condition. Cable may be silicone injected, splice<br>ut back into service or replaced with equal or greater capacity TRXLPE cab<br>sing current installation standards.<br>urther information regarding cable testing can be found in the review pape |                                   |  |  |

"2016 – Energy Ottawa – Direct Current (DC) Polarization/Depolarization Current Measurement Method Evaluation"

• XLPE is an abbreviation for Cross Link Poly Ethaline



# A REPETITIVE MAINTENANCE TASKS

## A1 Maintenance Task Template

| Circuit Breakers - SF <sub>6</sub> Dead Tank (Spring Operator)<br>ABB PM |                                      |                                      |                                      |                                      |  |  |
|--------------------------------------------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--|--|
|                                                                          | Triggers                             |                                      |                                      |                                      |  |  |
| Tasks                                                                    | Not Critical Low Medium High         |                                      |                                      |                                      |  |  |
| Integrity Check                                                          | 12 months                            | 12 months                            | 12 months                            | 12 months                            |  |  |
| Functional Check                                                         | < 1 ops in 24 months                 |  |  |
| Density Monitor Check 60 months 60 months 60 months                      |                                      | 60 months                            |                                      |                                      |  |  |
| Mechanism and<br>Main Contact Check                                      | 2000 operations /<br>15 years/ FAO's | 1750 operations /<br>15 years/ FAO's | 1500 operations /<br>15 years/ FAO's | 1250 operations /<br>15 years/ FAO's |  |  |

| 4   | 2010 12 22 | Combined Mech and Main contact check into one task.                                                                                                                                                                                                                                                       | СМ                | DJD                   |                | GV       |                                     |
|-----|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-----------------------|----------------|----------|-------------------------------------|
| 3   | 2004 04 19 | Increased Integrity Check trigger interval.                                                                                                                                                                                                                                                               | СМ                | TR                    |                | DW       |                                     |
| 2   | 2001 12 15 | Changed the trigger of the Density Monitor<br>Check from 24 to 60 months. Removed the<br>SF6 gas quality check from the main<br>contact check. Removed the Vibration<br>Measurement test from the Mechanism<br>Check. Removed the air gap clearance<br>check from the mechanism check.<br>Changed header. | GW                | TR                    |                | DW       | Original<br>signed by<br>G.A. Verch |
| 1   | 2001 06 05 | Combined lubrication & mechanism check.<br>Added time trigger to mechanism check.<br>Removed infrared scan. Changed<br>diagnostic check to main contact check.                                                                                                                                            | GW                | TR                    |                | DW       | 2011 02 01                          |
| 0   | 2000 11 06 |                                                                                                                                                                                                                                                                                                           |                   | TR                    |                | DW       |                                     |
| No. | Date       | Revision                                                                                                                                                                                                                                                                                                  | AMR<br>Specialist | Tech Supp<br>Services | Insul.<br>Eng. | AMR Eng. |                                     |

# T&D Reliability Centered Maintenance Project Final Report

| Prepared by: | Don Webster |
|--------------|-------------|
| Checked by:  |             |
| Approved by: |             |
|              |             |
| Date:        | 2001 05 14  |
| Report No.:  | AMD 2001-06 |
| File No.:    |             |

# **Executive Summary**

Reliability Centered Maintenance (RCM) is a methodology that leads to the performance of the right maintenance task, at the right time and for the right reason. Reliability Centered Maintenance was pursued by T&D as a means of improving maintenance performance in terms of reliability and cost efficiency. This report reviews the progress of RCM within T&D to December 31, 2000, including the development, implementation, achievements and opportunities of the RCM Program.

An RCM Pilot Project was initiated in February of 1998 to evaluate the potential of RCM in T&D, and was completed in August, 1998. A business case based on the results of the Pilot Project projected an average annual maintenance cost benefit of \$2,003,000, with break even on investment by 2006/2007. The full scale T&D RCM Project proceeded and the RCM order was finally closed out in August, 2000 at a total cost of \$2,582,000. Implementation of RCM in T&D commenced in April, 2000. The projected average annual maintenance cost benefit is now \$3, 308,145, with breakeven in 2002/2003.

Implementing RCM in T&D has enabled the movement from what was previously a time-based maintenance practice which over-maintained equipment and was often invasive in nature, to a maintenance practice which is condition-based and eliminates many of the invasive maintenance tasks. By emphasizing condition monitoring tasks that do not require equipment outages, RCM has reduced the number of equipment outages by approximately 70%.

The performance of the RCM Program will be measured with respect to reliability, availability and cost effectiveness. A total of 27 measurements have been identified consisting of nine external measurements (high level indicators which measure maintenance performance from the perspective of the customer), 6 internal measurements (leading indicators that measure maintenance performance from the perspective of the electrical equipment) and 12 maintenance process measurements, which monitor aspects of the maintenance process which can potentially effect the performance of the equipment.

The T&D RCM Engineering Committee has been established to provide direction for the continuing RCM program, and will encourage and support the continuing application of RCM methodology in T&D, to achieve and optimize the full benefits of RCM to the Corporation.

The Committee includes members from Apparatus Maintenance Division, Communications Department, System Support Department, Line Maintenance and Insulation Engineering/Testing.

# Table of Contents

| Objective                                             | 3   |
|-------------------------------------------------------|-----|
| Conclusions                                           | 4   |
| Recommendations                                       | 6   |
| Introduction                                          | 7   |
| A. Former Maintenance Practice in T&D                 | . 8 |
| B. Reliability Centered Maintenance                   | 9   |
| C. The RCM Pilot Project                              | 9   |
| D. Development/Implementation of RCM in T&D           | 11  |
| D.1 The T&D RCM Engineering Committee                 | 11  |
| D.2 RCM Documents                                     | 12  |
| D.2.1 The RCM Task Template                           | 12  |
| D.2.2 RCM Job Descriptions                            | 14  |
| D.2.3 Supporting Documentation for RCM Task Templates | 14  |
| D.2.4 The Protection Maintenance Ground Rules         | 16  |
| E. RCM Training                                       | 17  |
| E RMS/AMPS/TLMIS                                      | 17  |
| G. RCM Task Implementation                            | 18  |
| H. RCM Project Completion                             | 19  |
| I. The Circuit Breaker Maintenance Formula            | 20  |
| J. RCM Project Cost                                   | 21  |
| K. RCM Benefits                                       | 21  |
| K1 Reliability                                        | 22  |
| K.2 Availability                                      | 22  |
| K.3 Financial Benefits                                | 22  |
| K.3.1 Maintenance Labour Reduction                    | 23  |
| K.3.2 RCM Staff                                       | 27  |
| K.3.3 T&D Net Labour Reduction                        | 28  |
| K.3.4 Projected Annual Maintenance Cost Benefit       | 29  |
| K.3.5 T&D RCM Economic Analysis                       | 29  |
| K.4 Additional RCM Benefits                           | 33  |
| L. Measurement of RCM Effectiveness                   | 33  |
| L1 External Measurements                              | 34  |
| L.2 Internal Measurements                             | 36  |
| L.3 Maintenance Process Measurements                  | 38  |
| M. Opportunities and Issues                           | 38  |

# **Objective**

The objective of this report is to review the progress of RCM within T&D, including the development, implementation, achievements and opportunities of the RCM program. The benefits of the RCM program are addressed in terms of improved reliability, availability and financial benefits.

# **Conclusions**

- 1. Reliability Centered Maintenance (RCM) is a process which is used to determine that a physical asset, system or process continues to do whatever is required of it. RCM is a methodology which leads to the performance of the right maintenance task, at the right time and for the right reason. Implementing RCM in T&D has enabled the movement from what was previously a time-based maintenance practice which over-maintained equipment and was often invasive in nature, to a maintenance practice which is condition-based and eliminates many of the invasive maintenance tasks.
- 2. The goal of RCM is to improve reliability by identifying the ways in which components of a system fail, and then selecting maintenance tasks which can prevent or predict these failures before a forced outage occurs. At this point, it is not known what the improvement in reliability will be, or even if there will be an improvement. Reliability theory suggests that the worst possible outcome regarding reliability would be that reliability would remain unchanged. Improvement in equipment reliability will be established through future measurements of the performance of the RCM Program via RMS/AMPS.
- 3. The previous maintenance practice required relatively frequent outages to take equipment out of service on a regular basis to perform invasive maintenance. In the RCM Program, most calendar time-based intrusive maintenance has been replaced with non-invasive condition monitoring tasks which do not require outages. The frequency of many maintenance tasks which do require outages were decreased to better reflect the inherent reliability of the equipment. It is estimated that scheduled equipment outages will be reduced by approximately 70% with RCM.
- 4. The total cost of the T&D RCM Project from the beginning of the RCM Pilot Project in February, 1998 to the close out of the RCM order at the end of August, 2000, was \$2,582,020. This compares with an estimated cost of \$3,073,157 which was estimated during the Pilot Project.
- 5. Most of the financial benefits derived from RCM will be a result of labour reductions associated with programmed maintenance. There is a projected labour reduction of 26 EFT's in T&D. It should be noted that this is a theoretical reduction due to RCM alone and does not consider other factors affecting manpower requirements. For manpower planning purposes, an EFT (filled and vacant positions) reduction of 15 is projected for T&D.

- 6. The projected annual benefit from RCM is \$3,308,145. This compares with an annual projected benefit of \$2,003,000 estimated during the pilot project. The economic analysis models the benefits as starting at 20% of the projected annual benefits in fiscal year 2000/2001, and escalating in equal 20% increments until the full projected annual benefits are attained in fiscal year 2004/2005.
- 7. The RCM program will break even on investment in fiscal year 2002/2003. The accumulated net present value of the benefits from the RCM program will be \$23,400,000 after 20 years (from the start of the Pilot Project), providing an average annual rate of return on investment of 51.1% over the 20 year period. The Pilot Project had estimated break even in 2006/2007, an accumulated NPV after 20 years of \$9,700,000 and an average annual rate of return of 23.5%.
- 8. With RCM, a maintenance program is now in place that is documented, justified and monitored for optimization.
- 9. Improvements have been made in AMPS and RMS to support RCM. These changes will provide improved reporting of failures and analysis of the root causes of failures.
- 10. The performance of the RCM program will be measured. A total of 27 measurements have been identified consisting of 9 external measurements, 6 internal measurements and 12 maintenance process measurements. The external measurements are high level indicators which measure maintenance performance from the perspective of the customer. The internal measurements are leading indicators for maintenance performance and measure maintenance performance with respect to the electrical apparatus. All of these indicators measure maintenance performance process measurements will monitor aspects of the maintenance process which can potentially affect the performance of the apparatus.
- 11. An RCM Training Module has been developed to provide RCM and reliability training to existing technicians and trainees.
- 12. The T&D RCM Engineering Committee was formed to provide the direction, framework and climate which will encourage and support the continuing application of the RCM methodology in T&D, to achieve and optimize the full benefits to the Corporation.

# **Recommendations**

- 1. Further application of criticality (system) analysis, should be persued in T&D in order to direct maintenance resources at those system components which have significant failure consequences and probability.
- 2. Training concerns resulting from RCM should be pursued to resolution as per the recommendations of the Apparatus Maintenance Process Review Team.
- 3. The T&D Engineering Committee will pursue the issue of outage coordination between Maintenance Departments.
- 4. Communication between the T&D RCM Engineering Committee and the Generation and HVDC RCM Groups should be enhanced in order to share RCM experience, particularly where there is common equipment.

# Introduction

Prior to fiscal year 2000/2001, maintenance within T&D had been basically time-based preventative maintenance. While some condition-based predictive maintenance had also been applied, it was often overridden by the time-based overhaul. In addition, many of the maintenance tasks were not optimized. The result of this practice was unnecessary maintenance which not only lead to maintenance costs which were higher than they needed to be, but also in some cases, resulted in reduced reliability rather than improved reliability.

Reliability Centered Maintenance (RCM) was pursued as a means of improving maintenance performance in terms of reliability and cost. RCM is a process used to determine what must be done to ensure that any physical asset, system or process continue to do whatever is required of it. An RCM Pilot Project which studied the supply to Rosser Station and St. Vital Station was initiated in February, 1998. After the Pilot Project was completed in August 1998, the full scale T&D RCM Project proceeded based on the economic analysis developed in the Pilot Project. Implementation of the RCM Program commenced in April, 2000 and the T&D RCM order was closed out in August, 2000.

## A. Former Maintenance Practice in T&D

The former maintenance practice in T&D was mostly time-based preventative maintenance. This was the common maintenance practice of most electric utilities for the last forty years. Some predictive maintenance had been introduced in T&D over the years including various diagnostic tasks for transformers and timing and motion analysis for circuit breakers. A maintenance formula for scheduling high voltage circuit breaker maintenance was also being used. The previous maintenance practice had several shortcomings.

- 1. Most maintenance was time-based while the variable which actually caused deterioration of the equipment was often not time. For example, the complete inspection interval for circuit breakers was 10 years. This was not the appropriate trigger for maintenance, as the operating mechanism actually deteriorated with operations and the interrupters deteriorated with accumulated fault current.
- 2. Where the appropriate maintenance triggers were used, the trigger was often overridden by the existing time-based maintenance. For example, even though the circuit breaker maintenance formula would predict the maximum number of fault operations a circuit breaker could accumulate before the contacts required replacement, the contacts were still inspected every 10 years, even if the formula indicated that very little contact erosion would be expected.
- 3. Maintenance intervals were not optimized. Because of this, in many cases, maintenance inspections were performed too frequently. Some equipment would be opened up every maintenance cycle, only to find nothing wrong with it. What was desired was a maintenance practice that would lead to the performance of invasive maintenance work when it was actually necessary.
- 4. By performing invasive maintenance on equipment when it was really unnecessary to do so, in some cases, the equipment was inadvertently left in a more unreliable state. By disassembling equipment and rebuilding it, a stable system was disturbed and infant mortality failures were reintroduced.
- 5. Maintenance costs were higher than they needed to be. Every time a piece of equipment was disassembled, only to find nothing wrong with it, maintenance resources were being wasted.

6. Relatively frequent outages were required. Circuit breakers would be taken out of service every year or every two years to perform an inspection which was little more than a visual inspection.

# B. Reliability Centered Maintenance

Reliability Centered Maintenance (RCM) is a process used to determine what must be done to ensure that any physical asset, system or process continues to do whatever is required of it. RCM is a methodology which leads to performance of the right maintenance task, at the right time, and for the right reason. RCM is not new. RCM was born in the airline industry in the late 1960's. RCM has now been adopted by a growing number of electrical utilities on a world wide basis. While it is not easy to describe the RCM process briefly, RCM has four defining features:

- 1. The primary objective of RCM is to preserve system function, not equipment function.
- 2. RCM identifies specific equipment failure modes that can defeat the function of the system. A failure mode is a description of how a piece of equipment fails.
- 3. RCM then determines the consequences and the probability of the various failure modes and prioritizes the importance of the various failure modes.
- 4. RCM then assigns task maintenance which can predict, prevent or mitigate each failure mode. The most cost effective tasks are chosen for each failure mode.

# C. The RCM Pilot Project

RCM was pursued as a means of improving the existing maintenance practice in T&D in terms of reliability and cost. An RCM Steering Committee chaired by W. DeJaegher was established. An RCM Pilot Project which studied the supply to Rosser Station and St. Vital Station, was initiated in April 1998. An RCM Project Group lead by D. Hosea was formed and International Reliability Consultants (IRC) served as the consultant for the Pilot Project. The Pilot Project included the Apparatus Maintenance Division, Communications Department, System Support Department and Transmission Construction and Line Maintenance Division. The Pilot Project performed criticality analysis (system analysis) of the supply to Rosser Station and St. Vital Station. Criticality analysis is the analysis process which determines the consequences and the probability of a particular failure mode for a piece of equipment, and assigns a criticality level of non-critical, low, medium or high to the apparatus. In RCM, the maintenance applied to the same make and model of equipment may be different for different criticality levels.

The criticality analysis also required analysis of Dorsey, Transcona, Ridgeway and Selkirk Generating Stations. The Project Group developed maintenance tasks for the station equipment by conducting Mode/Cause/Task Analysis with a number of field staff. Mode/Cause/Task Analysis lists the failure modes for the piece of equipment, identifies possible causes of each failure mode and then selects tasks which can prevent, predict or mitigate each failure mode.

The maintenance tasks selected during the Pilot Project differ from the existing maintenance tasks in that:

- 1. Time-based invasive maintenance was virtually eliminated for most apparatus.
- 2. Condition-directed tasks were now being used. Equipment was left in service if the condition of the equipment indicated it was suitable to leave it in service.
- 3. Tasks were now triggered by the parameters which actually caused the deterioration of the equipment.
- 4. The visual inspection requiring no equipment outage became a key conditiondirected task.
- 5. Task frequencies were adjusted to better reflect the inherent reliability of the equipment.
- 6. In general, most of the tasks which were performed in the existing maintenance practice were still being performed in RCM. The tasks had different triggers and some tasks which previously required outages, were modified so that outages were not required, but generally the same tasks were still being performed.

A business case analysis was developed based on the results of the Pilot Project. The business case estimated an annual net maintenance cost benefit of \$2,003,000 which would be achieved by fiscal year 2006/2007, with breakeven on investment being achieved in 8 years. The accumulative net present value of the benefits was estimated to be \$9,700,000 by the end of 2016/2017 (20 years after the start of the pilot project). The average annual rate of return on investment was estimated to be 23.5% over 20 years.

The Pilot Project was completed in August, 1998.

# D. Development/Implementation of RCM in T&D

Based on the economic analysis developed in the Pilot Project, the full scale T&D RCM Project proceeded. Initially the scope of the Project was limited to voltages of 33kV and higher. In January 1999, the project was expanded to include voltages below 33kV. This brought the lower voltage circuit breakers (including metalclad switchgear breakers) and reclosers into the Project. The scope of the project was again expanded to include auxiliary equipment in December 1999. This equipment consisted mostly of batteries and battery chargers.

# D.1 The T&D RCM Engineering Committee

The T&D RCM Engineering Committee was formed in February 1999. The mission of the Committee was to "provide the direction, framework and climate which will encourage and support the continuing application of the Reliability Centered Maintenance methodology in T&D, to achieve and optimize the full potential benefits to the Corporation." The Committee reported to the RCM Steering Committee. The T&D RCM Engineering committee is chaired by D. Webster and consists of members from Apparatus Maintenance Division, Communications Department, System Support Department, Line Maintenance and Insulation Engineering/Testing. The Committee is responsible for directing the implementation of the T&D RCM Program.

#### D.2 RCM Documents

#### D.2.1 The RCM Task Template

The key RCM document is the RCM Task Template which is now simply referred to as the Maintenance Task Template. The Task Template lists the maintenance tasks and the maintenance intervals for these tasks. Refer to Task Template BKR020 on the following page. The variables which are used to schedule the maintenance tasks, such as time or operations, are referred to as task triggers. The values assigned to these trigger variables are referred to as criticality triggers. There are four levels of criticality; noncritical, low, medium and high. The criticality triggers may vary with the criticality level on the Task Template. The criticality level to be applied to a given piece of equipment is determined by criticality analysis (system analysis).

While the application of criticality is in general, a major component of RCM, only limited application of criticality has been applied within T&D. The only applications of criticality at this point are circuit breaker mechanisms and relays. The reason for the limited application of criticality has been the difficulty in differentiating tasks and triggers for different criticality levels. Further applications of criticality will be pursued as experience is gained with RCM.

In the Apparatus Maintenance Division, the RCM Project Group developed the Task Templates by conducting Mode/Cause/Task Analysis with field staff who had experience in maintaining the equipment. The task trigger variables and values were selected by the Technical Support Specialists. In the Protection Maintenance Section of System Support Department, Communications Department, and Line Maintenance, the Task Templates were developed by the Maintenance Engineering Staff.

The Technical Support Services (TSS) Section of the Apparatus Maintenance Division has developed 59 Task Templates to date and has posted them on the TSS Maintenance Manual Web Page. Protection Maintenance has developed a total of 22 Task Templates for relays, recorders and meters. Communications Maintenance has completed 28 Task Templates for tele-protection, power line carrier, telephones, microwave radios, firbre and metallic cables, and VHF radios.

| Breaker - SF6 (Spring Operator)                               |                                                                                                                        |                           |                                         |                          |  |  |  |  |  |
|---------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|---------------------------|-----------------------------------------|--------------------------|--|--|--|--|--|
| ABB HPL                                                       |                                                                                                                        |                           |                                         |                          |  |  |  |  |  |
|                                                               | Criticality Triggers                                                                                                   |                           |                                         |                          |  |  |  |  |  |
| Task                                                          | Not Critical                                                                                                           | Low                       | Medium                                  | High                     |  |  |  |  |  |
| integrity check                                               | 6 months                                                                                                               | 6 months                  | 6 months                                | 6 months                 |  |  |  |  |  |
| Infrared Scan                                                 | 24 months                                                                                                              | 24 months                 | 24 months                               | 24 months                |  |  |  |  |  |
| Functional check                                              | <1 operation in 24 months                                                                                              | <1 operation in 24 months | <1 operation in 24 months               | <1 operation in 24 month |  |  |  |  |  |
| Density monitor check                                         | 24 months                                                                                                              | 24 months                 | 24 months                               | 24 months                |  |  |  |  |  |
| Insulation chock                                              | 120 months                                                                                                             | 120 months                | 120 months                              | 120 mon;hs               |  |  |  |  |  |
| Diagnostic check                                              | FAO's / ASO's                                                                                                          | FAO's / ASO's             | FAO's / ASO's                           | FAO's / ASO's            |  |  |  |  |  |
| Mechanism check (PLG 1002)                                    | 2000 operations                                                                                                        | 1500 operations           | 1250 operations                         | 1000 operations          |  |  |  |  |  |
| Mechanism check (ELG 1002A)                                   | 4000 ocerations                                                                                                        | 3750 operations           | 3250 operations                         | 3000 operations          |  |  |  |  |  |
| Functional check<br>Density monitor check<br>Insulation check | Functional operation (Open/Close) and observe<br>Test of density monitor<br>Model 100 bridge test of grading opportore |                           |                                         |                          |  |  |  |  |  |
| Diagnostic check                                              | Dynamic contact resistances<br>SF8 gas quality (are by-products - SOs)                                                 |                           |                                         |                          |  |  |  |  |  |
| Mechanism check                                               | Motion analyze dashpots<br>Vibration measurements (in                                                                  | cludes timing/metion)     |                                         |                          |  |  |  |  |  |
| Track & Trend                                                 | Timico/motion                                                                                                          |                           | Compare to original traces              |                          |  |  |  |  |  |
| Information                                                   | Density monitor                                                                                                        |                           | Changes?? (+/-% of setting)             |                          |  |  |  |  |  |
|                                                               | Dynamic contact resistance                                                                                             |                           | Compare to original traces              |                          |  |  |  |  |  |
|                                                               | Vibration measurements                                                                                                 |                           | Compare to original traces              |                          |  |  |  |  |  |
|                                                               | Number of operations - fault                                                                                           | s/ o:hers                 | Accumulate operations to contact rating |                          |  |  |  |  |  |
|                                                               | SF6 gas quality (arc by-prod                                                                                           | ucts)                     | PPM (SO <sub>2</sub> )                  |                          |  |  |  |  |  |
|                                                               | Insulation measurements                                                                                                |                           | D.F./Capacitarce                        |                          |  |  |  |  |  |

| 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1 |          |             |            |               |             |          | Original<br>Signed By<br>D.K. Webster |
|------------------------------------------|----------|-------------|------------|---------------|-------------|----------|---------------------------------------|
| 1                                        | 00/05/23 | Added ASO's | BC         | WD            |             | DW       | 00 06 01                              |
| 0                                        | 99/11/25 |             | BC         | DW            | W.McD       | DW       |                                       |
| Nc.                                      | Date     | Revision    | RCM Analys | Fech Supp Sar | Insul. Eng. | RCM Eng. |                                       |

Line Maintenance has developed templates for 23 components. A given tower structure will have a number of these components.

## D.2.2 RCM Job Descriptions

The maintenance tasks on the Task Templates differ from the former maintenance tasks. They have different names than the former tasks, have different content and are performed at different intervals than the previous tasks. The Electrical Apparatus Maintenance (EAM) Manuals in current use in Apparatus Maintenance are written for the former maintenance tasks and are not compatible with the new RCM maintenance tasks. Many of the existing standards in the Manuals are also out of date and are written in several different formats. A new standard for writing maintenance standards for the EAM Manual has been drafted. The standard incorporates RCM requirements and all maintenance standards in the manual will be written to the new standard by the end of 2002.

In the interim, a document was necessary to link the new RCM tasks to the existing standards. This document is referred to as the "RCM Job Description". The Job Descriptions list the maintenance tasks on the Task Template and either briefly describes the task and/or identify the location in the existing standard (or other document) where the task is described. The new RCM tasks are also not compatible with the existing test sheets. New "check sheets" have been created for most of the Integrity Checks on the Task Templates. Check Sheets will now need to be created for the other tasks on the templates. The Job Descriptions and Check Sheets have been posted on the TSS Maintenance Manual Web Page.

D.2.3 Supporting Documentation for RCM Task Templates

There are a number of RCM documents which support the RCM Task Templates.

1. Maintenance Task Justifications

This document gives the justification for the maintenance tasks and triggers. It documents the reason the tasks were chosen and the basis for the task triggers.

2. Component Task Comparisons.

Lists three sets of maintenance tasks.

- the manufacturer's maintenance recommendations.
- the pre-RCM maintenance tasks identified in the Electrical Apparatus Maintenance Manuals.
- the new RCM maintenance tasks. This document illustrates the fact that most of the pre-RCM maintenance tasks are still being performed in RCM. The name of the tasks may be different, and their triggers may be different, but they are still being performed. The document shows that maintenance tasks are generally not eliminated; they are simply being performed at more appropriate times.
- 3. Comments on Tasks

For each maintenance task, this document briefly comments on why the task is being performed and how it should be performed.

4. Breakdown/Defective History

Gives the failure history for the apparatus covered by the Task Template. This document gives the number of failures and problems experienced by the equipment and briefly describes the failure or problem. The data source for the failures and problems is RMS and/or AMPS. This document quantifies the level of inherent reliability of the equipment and also establishes what kind of problems have been experienced with the equipment. This information is used to select maintenance tasks and choose appropriate triggers for the tasks.

## 5. Mode/Cause/Task Analysis

Documents the mode/cause/task analysis which was used to select the RCM maintenance tasks. The document lists the failure modes for the apparatus and then assigns possible causes for each failure mode. Tasks are then identified which can detect or prevent the failures. For each failure cause, there are generally a number of tasks listed which can detect or prevent the failure. From this list, the most cost effective task is chosen for each failure cause. It is this collection of cost effective tasks which appear on the Task Template.

## D.2.4 The Protection Maintenance Ground Rules

Protection Maintenance has developed a document titled "RCM Ground Rules for Protection Schemes", that is used to determine the maintenance interval for relay schemes. There are three basic types of relay schemes.

- 1. A/B
- 2. Main/Backup
- 3. Main

Maintenance intervals are based on three factors; the consequence of failure, the probability of failure and environmental factors. The consequence of failure is determined by the scheme type and the technology of the major relays within the scheme. There are four relay technologies:

- 1. Electro Mechanical
- 2. Solid State
- 3. Digital Not Monitored.
- 4. Digital Monitored.

The probability of failure is established by the technology of the major relay within the scheme. There are two environmental classifications, good and bad, which are based on the cleanliness and vibration level of the relay location. The three factors are then multiplied together to yield a single maintenance factor. A graph is then used to convert the maintenance factor into a maintenance interval for the relay scheme.

## E. RCM Training

During the Project, the Project Group gave a number of RCM presentations in the work centres when they were conducting interviews for mode/cause/task analysis and also provided RCM training for TSS staff. An RCM Training Module was prepared by Don Webster and was mailed out to all Apparatus Maintenance Staff in March, 2000. The initial target group for the Training Module was the existing Technicians. The long term intent is to have the Training Module included in the Training Program for Technicians. RCM presentations were made in the work centres over the Spring of 2000. The presentations were conducted by the RCM Project Group and members of TSS, Protection Maintenance and RMS. The presentations were generally well received. The major concerns expressed by staff were the concern for job loss, the reduced opportunity for "hands on" training under RCM and some concerns relating to the new RCM maintenance tasks and triggers. The questions and concerns expressed by staff and the responses of the presenters were recorded at the presentations and will be posted on the TSS Web Site. At this point in time, staff are familiar with the basic principles of RCM. Their major concerns are with the performance and the usefulness of some of the RCM tasks. The problems associated with the performance of some of the tasks are currently under investigation by TSS staff.

# E RMS/AMPS/TLMIS

There are three Computerized Maintenance Management Systems (CMMS) being used in T&D. RMS is the "in-house" system developed by the Apparatus Maintenance Division. RMS was originally an acronym for Regional Maintenance System but is now simply a name. AMPS is a commercial system used by Power Supply. The TLMIS (Transmission Line Maintenance Information System) is an in-house maintenance management system recently developed for Line Maintenance. RMS was an existing system at the beginning of the RCM Project. RMS was in DOS format and was not capable of supporting RCM. RMS was converted from its existing DOS version to Windows in the Spring of 2000. RMS was also modified to support RCM. RCM now has failure reporting and root cause failure analysis. TSS staff are responsible for the root cause failure analysis and are required to "sign off" all root cause failure analysis in RMS. There are pick lists in RMS for the technician to choose from when selecting the failure mode and failure cause for the failure report. These pick lists will help to improve the quality and usefulness of the failure data in RMS. This was a previous shortcoming of RMS.

AMPS was also an existing system at the beginning of the RCM project. The system was purchased from TSW (The System Works) which is presently known as Indus International. A module from Indus will be added to AMPS to enable it to support RCM.

Line Maintenance will use the Transmission Line Maintenance Information System (TLMIS) as a line patrol/inspection software. This software is being developed in-house and will be capable of supporting their RCM activities.

# G. RCM Task Implementation

In January, 2000, entry of the RCM Task Templates into RMS and AMPS was started. These Task Templates were then implemented for the maintenance year starting April, 2000. When Task Templates were not yet available, existing maintenance practices were followed.

The 59 Task Templates developed by TSS have now been installed in RMS. A number of task templates are currently under development and will be completed by the beginning of the 2001/2002 fiscal year. These include air systems, power supplies, converters, inverters, engines, fuses, generators and switchgear.

Protection Maintenance has developed 22 Task Templates for relays, recorders and meters. These task templates have been installed in AMPS. Task templates for RTUs, telemetry and EMS/SCADA will be developed and implemented in fiscal year 2001/2002.
Communications Maintenance has developed 28 task templates for teleprotection, power line carrier, telephones, microwave radios, firbre and metallic cable, and VHF radios. These task templates have been installed in AMPS. Four task templates remain to be developed and implementation will be completed by the beginning of the 2001/2002 fiscal year. Communications will perform maintenance with the lines in service where there is redundancy.

Line Maintenance has developed task templates for 23 components. The Line Maintenance Task Templates differ from the other groups in that they apply to components of the tower structures and not the entire structure. A given tower will have a number of these components and all the task templates associated with those components will apply to that specific tower. The task templates have not been entered into the TLMIS as the programming has not yet been completed. The anticipated completion date is December, 2002.

Most of the task templates which were developed in the Pilot Project have now gone through a number of revisions. Through continuous improvement, some tasks have been added, deleted or altered and some of the task triggers and trigger values have been changed.

#### H. RCM Project Completion

The T&D RCM order was closed out in August, 2000. A number of task templates remain to be completed and revisions to existing task templates continue to be revised on relatively infrequent basis. The continuing revisions are expected as there is very little chance that the templates would have been entirely correct on the first attempt. The templates will most likely be revised from time to time as new knowledge is applied from what is continually being learned. This is often referred to as the "RCM Living Program". This reflects the fact that RCM is a continuous improvement process. It is not just a one time effort.

The Apparatus Maintenance Process Improvement Team identified "a critical ongoing need to retain a skill set in RCM philosophy and practice within our TSS Group" and recommended that a permanent position be created in TSS to fulfil this requirement. A job description was written for an Apparatus Maintenance Reliability Specialist and the position was bid. This Specialist will perform RCM related analysis for TSS, Protection Maintenance, Communication Maintenance and Line Maintenance.

#### L The Circuit Breaker Maintenance Formula

One major shortcoming of the existing maintenance program identified by the RCM Project Group was the circuit breaker maintenance formula. The existing formula was developed in 1985. The formula calculated the number of fault operations a circuit breaker could tolerate before the contacts were eroded to the extent that they needed to be replaced. The formula was based on the manufacturer's recommended number of fault operations and the ratio of the rated interrupting current to the fault current available at the circuit breaker bus. It had always been known that the formula was very conservative, as faults do not all occur at the breaker bus but actually occur some distance down the line being protected by the circuit breaker. The formula was not modified as the required adjustments were fairly complex and would have to be calculated on a breaker by breaker basis.

During the summer of 1999, calculations were performed for all T&D circuit breakers to provide new fault adjusted operations (FAOs) based on faults occurring uniformly along the length of the line (s). The new FAO values are significantly greater than the previous values. These new values will then be adjusted as required based on the measured amount of contact erosion when the contacts are inspected when the FAO trigger is reached. The new FAO values will greatly reduce the amount of invasive maintenance performed on circuit breakers, and the cost associated with invasive maintenance.

Historically, FAOs were applied to high voltage circuit breakers in T&D. FAOs have now been applied to metalclad switchgear breakers and three phase reclosers. The Power Supply Business Unit has also applied FAOs to some of their circuit breakers.

#### J. RCM Project Cost

The estimated and actual cost for the T&D RCM Project are given in Table 1. These costs include all costs from the beginning of the Pilot Project in February 1998 to the close out of the T&D RCM Project order at the end of August, 2000.

|                                    | Estimated      | Actual         |
|------------------------------------|----------------|----------------|
| Pilot Project                      | \$ 833 729.00  | \$ 818 442.00  |
| Implementation Phase of<br>Project | \$2 239 428.00 | \$1 763 578.00 |
| Total T&D Project Cost             | \$3 073 157.00 | \$2 582 020.00 |

| Table | 1 | - | RCM | Pro | ject | Cost |
|-------|---|---|-----|-----|------|------|
|-------|---|---|-----|-----|------|------|

T&D and Power Supply's HVDC Division shared one order for the project. The costs identified here are T&D's share of the total project cost. A major component of the Pilot Project cost was the consultant fee. T&D's portion of this cost was \$335,592.

The annual costs of the project are as follows:

|         | <b>Total Annual Cost</b> | <b>Consultant Fee</b> |
|---------|--------------------------|-----------------------|
| 1997/98 | \$ 142 995.00            | \$ 52 954.00          |
| 1998/99 | \$1 300 678.00           | \$282 638.00          |
| 1999/00 | \$ 810 096.00            |                       |
| 2000/01 | \$ 268 251.00            |                       |
| TOTAL   | \$2 582 020.00           | \$335 592.00          |

#### K. RCM Benefits

The major potential benefits when making changes to improve and optimize a maintenance program are improved reliability, improved availability and reduced maintenance cost.

#### K.1 Reliability

On an equipment level, reliability is measured by the failure rate of that equipment. It is the goal of RCM to reduce forced outages of equipment to as close to zero as possible by detecting evolving failures before they cause forced outages. It is not known what this improvement in reliability will be, or even if there will be an improvement. Basic reliability theory suggests that the worst possible outcome regarding reliability would be that reliability would remain unchanged. Reliability would not be expected to deteriorate, at least not significantly. Improvements in equipment reliability will be established through future measurement of the performance of the RCM Program via RMS/AMPS.

#### K.2 Availability

Availability, on an equipment level, is the fraction of the time that the equipment is in service. Availability is reduced by in-service failures and by outages taken to perform maintenance on the equipment. RCM has replaced most calendar time-based invasive maintenance with non-invasive condition monitoring tasks which do not require outages. In addition, the frequencies of many maintenance tasks which do require outages were decreased to better reflect the inherent reliability of the equipment. It is estimated that scheduled equipment outages will be reduced by approximately 70% with RCM.

#### K.3 Financial Benefits

Most of the financial benefits derived from RCM will be the result of labour reduction associated with programmed maintenance. RCM has eliminated most calendar time-based intrusive maintenance tasks and relies more on non-intrusive monitoring tasks. The intrusive tasks required outages and were labour intensive. Most of the monitoring tasks require no outage and therefore have fewer hours associated with them than similar pre-RCM tasks. In addition, the RCM tasks which do require outages are generally performed at reduced frequencies compared to the pre-RCM tasks.

#### K.3.1 Maintenance Labour Reduction

Most of the labour reduction resulting from RCM is in the Apparatus Maintenance Division. Table 2 compares the RCM calculated man-hours with the actual pre-RCM man-hours. The annual man-hour reduction in Apparatus Maintenance is estimated to be 53,300 manhours or 27.33 EFT's.

The labour reductions were calculated by assigning hours to the tasks on the RCM Task Templates and applying these hours to the apparatus covered by the Task Templates. These hours were then totaled and compared to the hours for the pre-RCM tasks. The hours for the RCM tasks were estimated by the Maintenance Planners. The net result was a reduction in programmed maintenance of 53.73%. This reduction was then applied to the actual pre-RCM hours for programmed maintenance.

|                                                    | Pre-RCM<br>Mhrs.%                                                                                                     | Pre-RCM<br>Actual Mhrs.<br>1999/2000 | Post-RCM<br>Mhrs. % | Post-RCM<br>Calculated<br>Mhrs. | Mhr.<br>Reduction | EFT<br>Reduction |
|----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|--------------------------------------|---------------------|---------------------------------|-------------------|------------------|
| Programmed Maintenance                             | 22.8                                                                                                                  | 83 922                               | 12.3                | 38 831                          | 45 091            |                  |
| Programmed Projects                                | 4.6                                                                                                                   | 16 927                               | 5.4                 | 16 927                          | 0                 |                  |
| Capital Projects                                   | 14.1                                                                                                                  | 51 986                               | 16.5                | 51 986                          | 0                 |                  |
| Non-Programmed Work                                | 12.1                                                                                                                  | 44 467                               | 14.1                | 44 467                          | 0                 |                  |
| Corrective Work<br>(In-Service Failures)           | 4.6                                                                                                                   | 16 868                               | 5.4                 | 16 868                          | 0                 |                  |
| Corrective W ork (During<br>Scheduled Maintenance) | 3.8                                                                                                                   | 13 800                               | 4.4                 | 13 800                          | 0                 |                  |
| Contracting-In                                     | 0.3                                                                                                                   | 1 024                                | 0.3                 | 1 024                           | 0                 |                  |
| Recording                                          | 0.4                                                                                                                   | 1 513                                | 0.5                 | 1 513                           | 0                 |                  |
| Administration*                                    | 37.3                                                                                                                  | 137 345                              | 41.1                | 129 136                         | 8 209             |                  |
|                                                    | 100.0                                                                                                                 | 367 852                              | 100.0               | 314 552                         | 53 300            | 27.33            |
| *NOTE:                                             | Administration includes clerks, engineering, patrols, stores, supervisors, planners, meetings, vacation and sick time |                                      |                     |                                 |                   |                  |

#### Notes:

 RCM tasks which are triggered by non-time variables were modeled by assigning time triggers to the tasks. The non-time triggers generally apply to circuit breakers. It was assumed that the pre-RCM 10 year complete maintenance would now be performed every 20 years. This was based on the fact that circuit breakers were generally maintained at 10 years, as the maintenance formula would generally not trigger the complete prior to 10 years. The new FAOs are on average about twice the previous FAOs. Therefore, it is reasonable to assume that circuit breakers will not require contact replacement for 20 years. This is in fact a conservative assumption as most 115 kV and 230 kV circuit breakers will never require contact replacement due to the low rates of fault accumulation at these voltages.

Tasks triggered by operations, such as the mechanism check, were assigned a 15 year interval. This value should be conservative as most operating mechanism will never reach their triggers, which may be thousands of operations. This would be especially true for the 115 kV and 230 kV circuit breakers. The 15 year task may be appropriate however, for some lubrication related problems.

2. Some assumptions were necessary regarding the distribution of the pre-RCM manhours. The pre-RCM correctives do not differentiate between correctives due to in-service failures and correctives that are performed as a result of scheduled maintenance detecting a problem. Both are simply listed as correctives in the report. In addition, some corrective work has historically not even been recorded as a corrective, but instead, has simply been included in the programmed maintenance which immediately preceded the corrective work. If this corrective work is not removed from the programmed maintenance, the reduction calculation could be unrealistically high as the reduction would also be applied to some of the corrective work.

The following assumptions were made. It was assumed that 55% of the corrective hours resulted from in-service failures and 45% of the corrective hours applied to correctives performed as a result of scheduled maintenance detecting a problem. This was based on the data within RMS. It was assumed that half of the corrective hours resulting from scheduled maintenance were incorrectly included in the programmed maintenance. Although these assumptions are reasonable, there could be an error of several EFTs in the total.

- 3. The administration manhours include clerical staff, engineering, patrols, supervisors, planners, meetings, vacation and sick time.
- 4. The calculated manhour and EFT reductions are the theoretical savings due solely to RCM. They should not be applied to manpower planning. The manhour reduction assumes that all RCM tasks are performed and all pre-RCM tasks were performed prior to RCM and are included in the actual hours. The reduction does not take into account the fact that approximately 20% of pre-RCM programmed maintenance was generally not completed. Because of this, the calculation method will under estimate the theoretical labour savings and will overstate the actual reduction of current staff that is possible. In terms of manpower planning, the actual current staff (filled and vacant positions) reduction possible would be approximately 6 EFTs less than the number given in Table 2. The calculated reduction also does not consider any other factors such as changes in capital projects, programmed projects and non-programmed work.

It should also be noted that the entire RCM maintenance program is based on estimated hours. While these estimates are believed to be conservative, there may be a considerable difference between future actual hours and the estimated hours. Future experience with the RCM program will be required to establish manpower requirements.

| Component Type        | % of Total<br>Reduction |
|-----------------------|-------------------------|
| Arresters             | 2.12                    |
| Batteries             | 6.83                    |
| Battery Chargers      | 1.31                    |
| Capacitor Banks       | 1.68                    |
| Circuit Breaker (All) | 21.61                   |
| Circuit Switchers     | 0.33                    |
| Disconnects/Switches  | 9.95                    |
| Instruments           | 5.79                    |
| Metering              | 1.51                    |
| MOD's                 | 5.31                    |
| Reactors              | 0.36                    |
| Reclosers             | 2.65                    |
| Recorders             | 5.97                    |
| Regulators            | 3.62                    |
| Relays                | 10.07                   |
| Tap Changers          | 2.98                    |
| Transducers           | 2.69                    |
| Transformers - CT     | 2.64                    |
| Transformers - PT     | 7.06                    |
| Transformers - Power  | 5.51                    |
| TOTAL                 | 100.00                  |

## Table 3 - Apparatus MaintenanceLabour Reduction Distribution

5. The percentage of the total labour reduction attributed to each generic component type is shown in Table 3. The largest contributors to the reduction, in order of magnitude, are circuit breakers, relays, and disconnects/switches.

In addition to the projected labour reduction of 27 EFTs identified for Apparatus Maintenance, 2 EFTs were estimated by Protection Maintenance and 3 EFTs by Communications Maintenance.

Similarly to Apparatus Maintenance, the EFT reductions in Protection Maintenance and Communications Maintenance are theoretical savings due to RCM alone. Because of current staffing requirements, the five EFTs identified here will not result in an actual reduction of five staff.

#### K.3.2 RCM Staff

Some additional staff will be required to carry on the RCM maintenance program. RCM requires some work to be performed which was not previously being performed. Much of this work is associated with data management and quality control. The following additional staff have been identified.

- 1. An Apparatus Maintenance Realibility Specialist position has been bid in Apparatus Maintenance. The Analyst will:
  - perform system analysis of transmission and distribution systems in order to determine the criticality of the failure modes.
  - provide guidance to technical support staff in the selection of preventative and predictive maintenance tasks based on RCM analysis.
  - conduct studies of the maintenance and failure data to determine equipment reliability and recommend changes in the maintenance standards to optimize reliability.
  - monitor the application of RCM and assist staff to ensure that RCM methodology is being applied in a consistent manner.

The Specialist will perform these duties for all of T&D.

- 2. Additional manhours will be required in the field to:
  - input data for tracking and trending.
  - ensure the quality of data for tracking and trending.
  - ensure the quality of failure reports and root cause failure analysis.
  - monitor equipment performance and alert technicians to abnormal data trends.

The equivalent of 5 EFTs have been included to do this work. This will ensure that TSS receives quality data for analysis. It is critical that TSS has clean data for analysis, so that appropriate maintenance recommendations can be made. Regardless of who performs this work and where they perform it, it is necessary to identify the work in the overall labour reduction as it represents additional work necessary for the continuance of the RCM Maintenance Program.

#### K.3.3 T&D Net Labour Reduction

The T&D net labour reduction is shown in Table 4.

| Apparatus Maintenance EFT Reduction        |                          |    |  |  |
|--------------------------------------------|--------------------------|----|--|--|
| For Calculation of Labour Savings          | For ManPower<br>Planning |    |  |  |
| - Mhr. Reductions = 53 300/1 950 = 27.33 = | 27                       | 21 |  |  |
| - Reliability Specialist                   | -1                       | -1 |  |  |
| - Five (5) Field EFTs                      | -5                       | -5 |  |  |
| AM Net EFT Reduction                       | 21*                      | 15 |  |  |
| T&D Net EFT Reduction                      |                          |    |  |  |
| - Apparatus Maintenance                    | 21*                      | 15 |  |  |
| - Protection Maintenance                   | 2*                       | 0  |  |  |
| - Communications Maintenance               | 3*                       | 0  |  |  |
| - Line Maintenance                         | 0*                       | 0  |  |  |
| T&D Net EFT Reduction                      | 26*                      | 15 |  |  |



\*For the Annual Maintenance Net Cost Benefit derived from the indicated Net EFT Reduction, refer to Table 5

#### K.3.4 Projected Annual Maintenance Cost Benefit

Most of the savings derived from RCM are labour savings. There will also be some savings in parts and material. With intrusive maintenance being greatly reduced with RCM, the parts and material associated with this maintenance will also be reduced. The annual parts and material savings will be assigned a conservative value of \$200 000 per year.

Table 5 shows the estimated annual maintenance net cost benefit derived from RCM.

| Estimated Total Annual Maintenance Net Cost Benefit |                     |     |            |  |  |
|-----------------------------------------------------|---------------------|-----|------------|--|--|
| - Apparatus Maintenance                             | 21 x 1950 x \$62.75 | \$2 | 569 613.00 |  |  |
| - Protection Maintenance                            | 2 x 1950 x \$52.00  | \$  | 202 800.00 |  |  |
| - Communications Maintenance                        | 3 x 1950 x \$57.39  | \$  | 335 732.00 |  |  |
| - Line Maintenance                                  | 0                   | \$  | 0.00       |  |  |
| - Material Savings                                  |                     | \$  | 200 000.00 |  |  |
| Total Net Annual Benefit                            | 26                  | \$3 | 308 145.00 |  |  |

Table 5

The annual maintenance cost benefits are calculated by multiplying the manhour reductions by the appropriate activity rates. The projected annual benefit derived from RCM is \$3 308 145 per year. It is important to note that this cost benefit was determined by calculating the difference in man-hours required to complete the pre-RCM planned maintenance program to that required to accomplish the post-RCM program. For a number of years now, the planned programs have not been totally completed due to resource shortages; hence the actual "bottom line" cost reductions will be less than the Total Net Annual Savings indicated in Table 5. The historical resource shortage is approximately 6 EFTs in Apparatus Maintenance, 2 EFTs in Protection Maintenance and 3 EFTs in Communications Maintenance. This results in a "bottom line" cost reduction of \$2 035 438. It is however, appropriate to use programmed costs rather than actual costs in order to make visible the true benefits attributable to the RCM application.

#### K.3.5 T&D RCM Economic Analysis

In developing the T&D RCM economic analysis, it is recognized that all of the projected annual benefits will not be realized in the first year of implementation. It will take a number of years before the full benefits are realized. RCM was implemented in T&D at the start of the 2000/2001 fiscal year. All of the Task Templates were not completed at that time. Where Task Templates were not available, the previous maintenance practice was retained. Therefore 2000/2001 is a mixture of RCM maintenance tasks and pre-RCM maintenance tasks. In addition some time is required for maintenance staff to become familiar with the new RCM tasks and triggers and develop efficiency in planning, scheduling and performing the tasks.

#### Table 6

#### T&D Reliability Centered Maintenance

#### 20 Year Benefit Projections

|       | <b>Maintenance</b> | <u>Labor Savings</u> | Project [          | <u>Expenses</u> |                             |                         |                    |
|-------|--------------------|----------------------|--------------------|-----------------|-----------------------------|-------------------------|--------------------|
| Year  | Annual<br>Revenue  | PV of Revenue        | Annual<br>Expenses | PV of Expenses  | Accum Benefit<br>Total/Year | Annual NPV<br>(Rev-Exp) | Accumulated<br>NPV |
| 97/98 | \$0                | \$0                  | \$142,995          | \$142,995       | (\$142,995)                 | (\$142,995)             | (\$142,995)        |
| 98/99 | \$0                | \$0                  | \$1,300,678        | \$1,227,866     | (\$1,443,673)               | (\$1,227,866)           | (\$1,370,861)      |
| 99/00 | \$0                | \$0                  | \$870,096          | \$775,406       | (\$2,313,769)               | (\$775,406)             | (\$2,146,267)      |
| 00/01 | \$661,629          | \$556,618            | \$268,251          | \$225,676       | (\$1,920,391)               | \$330,943               | (\$1,815,324)      |
| 01/02 | \$1,323,258        | \$1,050,918          | \$0                | \$0             | (\$597,133)                 | \$1,050,918             | (\$764,406)        |
| 02/03 | \$1,984,887        | \$1,488,130          | \$0                | \$0             | \$1,387,754                 | \$1,488,130             | \$723,724          |
| 03/04 | \$2,646,516        | \$1,873,099          | \$0                | \$0             | \$4,034,270                 | \$1,873,099             | \$2,596,823        |
| 04/05 | \$3,308,145        | \$2,210,303          | \$0                | \$0             | \$7,342,415                 | \$2,210,303             | \$4,807,125        |
| 05/06 | \$3,308,145        | \$2,086,569          | \$0                | \$0             | \$10,650,560                | \$2,086,569             | \$6,893,694        |
| 06/07 | \$3,308,145        | \$1,969,762          | \$0                | \$0             | \$13,958,705                | \$1,969,762             | \$8,863,457        |
| 07/08 | \$3,308,145        | \$1,859,494          | \$0                | \$0             | \$17,266,850                | \$1,859,494             | \$10,722,951       |
| 08/09 | \$3,308,145        | \$1,755,399          | \$0                | \$0             | \$20,574,995                | \$1,755,399             | \$12,478,350       |
| 09/10 | \$3,308,145        | \$1,657,131          | \$0                | \$0             | \$23,883,140                | \$1,657,131             | \$14,135,481       |
| 10/11 | \$3,308,145        | \$1,564,364          | \$0                | \$0             | \$27,191,285                | \$1,564,364             | \$15,699,845       |
| 11/12 | \$3,308,145        | \$1,476,791          | \$0                | \$0             | \$30,499,430                | \$1,476,791             | \$17,176,636       |
| 12/13 | \$3,308,145        | \$1,394,119          | \$0                | \$0             | \$33,807,575                | \$1,394,119             | \$18,570,755       |
| 13/14 | \$3,308,145        | \$1,316,076          | \$0                | \$0             | \$37,115,720                | \$1,316,076             | \$19,886,831       |
| 14/15 | \$3,308,145        | \$1,242,402          | \$0                | \$0             | \$40,423,865                | \$1,242,402             | \$21,129,233       |
| 15/16 | \$3,308,145        | \$1,172,852          | \$0                | \$0             | \$43,732,010                | \$1,172,852             | \$22,302,084       |
| 16/17 | \$3,308,145        | \$1,107,195          | \$0                | \$0             | \$47,040,155                | \$1,107,195             | \$23,409,279       |
| TOTAL | \$49,622,175       | \$25,781,221         | \$2,582,020        | \$2,371,942     | 1                           |                         |                    |

| Discount Rate =             | 5.93%              |                 |
|-----------------------------|--------------------|-----------------|
| Present Value of Revenue (U | Using NPV formula) | \$25,781,221.31 |
| Present Value of Expenses ( | Using NPV formula) | \$2,371,942.21  |
| Net Present Value of Benefi | its                | \$23,409,279.10 |
| Benefit/<br>Cost Ratio =    | 10.87              |                 |

**IRR** 51.07%



# T + D RCM Project (Accumulated NPV - Breakeven Point)

In the economic analysis, the benefits were conservately modeled as starting at 20% of the projected annual benefit in fiscal year 2000/2001 and escalating in equal 20% increments until the full projected annual benefit is attained in fiscal year 2004/2005. The economic analysis is shown in Table 6. The accumulated net present values from Table 6 are plotted on the graph on the previous page, along with the accumulated net present values estimated in the pilot project. The accumulated NPV is much greater than estimated in the pilot project because:

- Equipment rated 24 kV and below and auxiliary equipment were not included in the pilot project but have now been included in the project. Equipment rated 24 kV and below includes the lower voltage circuit breakers, metalclad circuit breakers and three phase reclosers. Auxiliary equipment consists mainly of batteries and battery chargers.
- 2. Better estimates of the maintenance task hours are now available.
- 3. A total EFT reduction of 5 has been assigned to Protection Maintenance and Communications Maintenance, while only 2 EFTs were estimated in the pilot project.

Table 7 gives a comparison of the financial benefits derived from RCM to the benefits calculated in the pilot project.

|                                    | Calculated by<br>Pilot Project | Current<br>Projection |
|------------------------------------|--------------------------------|-----------------------|
| Annual Maintenance<br>Cost Benefit | \$2 003 000.00                 | \$ 3 308 145.00       |
| Break Even                         | 2006/2007                      | 2002/2003             |
| Accumulated NPV after 20 years     | \$9 700 000.00                 | \$23 400 000.00       |
| Average Annual ROI over 20 years   | 23.5%                          | 51.1%                 |
| EFT Reduction due to RCM           | 17                             | 26                    |

Table 7

#### K.4 Additional RCM Benefits

Besides improved reliability and availability and the financial benefits derived from RCM, there are a number of less tangible benefits which are also very important.

- 1. A documented and justified maintenance program is now in place and monitored for optimization in what is commonly referred to as the "RCM Living Program". The term reflects the fact that RCM is not just a one time event. It is a continuous improvement process.
- 2. Maintenance resources are applied where they will provide the greatest benefit.
- 3. Maintenance tasks which do not predict or prevent failures or are not cost effective, have been eliminated.
- 4. By fast-tracking implementation of RCM, maintenance savings are being realized in fiscal year 2000/2001.
- 5. Improvements made to RMS and AMPS to support RCM, will provide improved reporting of failures and analysis of the root causes of failures.
- 6. There will be less "wear and tear" on equipment due to reduced testing.
- 7. There will be improved staff ownership of the maintenance program. Field staff are actively involved in the development of the program and have a continuing role in its future development.

#### L. Measurement of RCM Effectiveness

A number of measurements will be used to monitor the effectiveness of the RCM program. The measurements will fall into two general categories:

- 1. External measurements of maintenance performance.
  - These are high level measurements of the effectiveness of the maintenance program.
  - They are lagging indicators that reflect how well the maintenance program has performed.
  - They measure maintenance performance from the perspective of the customer.

- 2. Internal measurements of maintenance performance
  - These are leading indicators for maintenance performance.
  - They measure maintenance performance with respect to the electrical apparatus.

The External and Internal indicators were developed by the AM Maintenance Process Review Team.

L1 External Measurements

The external measurements will consist of the following metrics.

- 1. STN-SAFF. The average number of interruptions per year per customer served, caused by events within stations. This is a reliability indicator.
- 2. STN-SAIDI: The average cumulative interruption duration (in minutes) per year per customer served, caused by events within stations. This is an availability indicator.
- 3. STN-CAID: The average duration (in minutes) of each interruption caused by events within stations. This is an availability indicator which only includes customers who have actually experienced interruptions.
- 4. Key Customer Interruption Rate: The average number of interruptions per year per key customer, caused by events within stations.
- 5. Quality of Power Indicator: The number of functional failures per year with a failure mode of "fails to regulate" per installed unit. The indicator includes regulators, LTCs, autoboosters and switched capacitor banks.

Cost Effectiveness Indicators

- 6. CE:STN-SAFF = STN-SAFFIx Maintenance Cost per Customer.
- 7. CE:STN-SAIDI = STN-SAIDI x Maintenance Cost per Customer.
- 8. CE:STN-CAIDI = STN-CAIDI x Maintenance Cost per Customer.
- 9. Maintenance Cost per Customer

#### Notes:

- 1. Indicators 1, 2, 3 and 4 include all interruptions for all events within stations including events which are not preventable by maintenance including lighting, ice storms and wildlife.
- 2. An interruption must be at least one minute in duration to be included in any of the indicators.
- 3. All indicators are calculated on a fiscal year basis.
- 4. For indicators 1, 2 and 3, only two of the three will be independent as CAIDI = SAIDI/SAIFI.
- 5. Indicators 6, 7 and 8 require the first variable in the expression to be multiplied by the maintenance cost per customer rather than divided by it.

The reason for this is that the first variable in the expression is an indicator which decreases as it improves. If it was divided by the maintenance cost per customer, then the cost effectiveness indicator would also decrease with an increase in the maintenance cost per customer, which is clearly not the desired result. When the two variables are multiplied, then the cost effectiveness indicator will decrease with an improvement of the first variable in the expression and will also decrease with a decrease in the maintenance cost per customer, thus producing the desired result.

6. The data for indicators 1, 2 and 3 is available from the System Interruption Report System of the Transformer Load Management System (TLMS). It is possible to generate a report which keys on interruptions where the cause was within a station. A trial report was run for Suburban East. The report was found to be only about 50% accurate. Of the known events, only half were included in the report. Almost all the events were actually in TLMS but were not included in the report because the fault location was not recorded as a station in the original Service Interruption Report. The Service Quality Department which is responsible for the TLMS, indicates that now this information will be used, they can implement procedures and educate staff to produce a report which will be close to 100% accurate. They are also reviewing the historical data and correcting these errors. Consideration has also been given to having the Electrical Maintenance staff report this information to help ensure accuracy.

#### L.2 Internal Measurements

The following internal measurements have been identified.

1. Reliability

Forced Outage Rate for:

- circuit breakers
- transformers
- three phase reclosers

= <u>annual number of forced outages</u> number of apparatus

A forced outage is defined as the automatic or emergency removal of a piece of equipment directly caused by defective equipment, adverse weather, adverse environment, system condition, human element or foreign interference.

2. Maintainability

Mean Time to Repair/Replace for:

- current breakers
- transformers
- three phase reclosers
  - = <u>total annual hours of forced outage time</u> total annual number of forced outages

#### 3. Maintenance Cost Effectiveness

Average Maintenance Cost for:

- circuit breakers
- transformers
- three phase reclosers
  - = <u>annual maintenance cost</u>
    - number of apparatus
- 4. Maintenance Task Estimating Effectiveness
  - = <u>total annual estimated hours x 100%</u> total actual annual hours

This indicator measures the effectiveness of the estimator (the Planner) and not the technician performing the work.

5. Maintenance Training Expenditure

= annual training expenditure X 100%

total operating cost

This indicator should be comparable to utilities following best practices.

6. Forces Outages/Alarm Response Time

Average Response Time For:

- circuit breakers
- transformers
- three phase reclosers

= total annual response time

total annual forced outages and alarms

The response time is the time for the technician to arrive on site after a forced outage or alarm, ready to start analyzing the problem. The time starts at the moment of failure or alarm.

Some of the metrics such as the Forced Outage Rate will be fairly easy to calculate and will only require a minor change to RMS to collect the required data. The impact on field staff will be minor and will consist of an additional check box for forced outages on the failure report screen. Other indicators such as the mean time to repair/replace and the forced outage/alarm response time will have a greater impact on field staff and RMS, as they would now have to track and record information which they did not previously record. Some of the internal indicators may be discarded, modified or replaced depending on the practicality of implementing these measurements. The indicators will be implemented at the beginning of the 2001/2002 fiscal year.

#### L.3 Maintenance Process Measurements

In addition to the internal and external measurements, the AM Process Review Team identified twelve maintenance process measurements. While these indicators do not measure the performance of the equipment, they monitor aspects of the maintenance process, which, if improved, will eventually improve the performance of the equipment. There is a cause and effect relationship between the maintenance process indicators and the apparatus performance indicators. The process indicators can be viewed as leading indicators for the internal indicators. As an example, one of the process indicators is the number of outstanding root cause failure analysis (RCFA). RCFA are performed to prevent failures from reoccurring. If there is a backlog of RCFA to be done, then reoccurrences of the failures may occur before the cause of the failure is determined. Thus, the maintenance process effects equipment performance.

Similarly to the other measurements, these indicators will be implemented at the start of the 2001/2002 fiscal year.

#### M. Opportunities and Issues

RCM is not a one time event. It is a continuous improvement process. Changes and improvements will be required as we move forward with RCM. A number of future opportunities and issues are evident.

1. Criticality

The objective of RCM is to preserve system function, not equipment function. Criticality is a measure of the consequence and probability of failure of a system component. In RCM, most of the maintenance resources are directed at those system components which have significant failure consequence and probability. This practice is sometimes referred to a "system based RCM". RCM which ignores criticality on a system basis and only considers criticality on a component basis, is referred to as "component based RCM". At this point, it is essentially component based RCM that is being practiced in T&D. The only current applications of criticality are circuit breaker operating mechanisms and relays. As RCM continues to develop, an effort will be made to find additional applications of criticality in system based RCM.

All of the necessary system analysis has been performed by the RCM Project Group. It is a matter of finding an application for the analysis.

- 2. The continuation of RCM principles is a major concern. Failures will occur with RCM as they will with any maintenance program. Over-reaction to these failures as an indication that the RCM way is the wrong way, must be resisted. The decision to change must be based on the analysis of these failures and a rational analysis of reliability over time, and not by knee-jerk reactions to individual failures.
- 3. Training has been identified as a major concern with RCM. Now that some equipment will no longer be taken out of service to perform invasive maintenance on a regular basis, there is a concern that technicians will no longer be able to maintain competency in invasive maintenance, and trainees will have difficulty in obtaining the necessary experience to complete their training. The training issues were considered by the AM Process Review Team. It was recommended that the Electrical Technician Training Committee (ETTC) address the first training concern. To address the second training concern, the Review Team recommended that the position of Field Training Coordinator be reaffirmed for each of the Departments, and provided with opportunities to enhance coordination of training on a Divisional basis.

- 4. Outage coordination will be an issue with RCM. There will need to be more communication among the Planners, so that the Maintenance Departments are aware of each other's outages, and can jointly plan their maintenance activities around these outages, which will be far fewer in number with RCM. The T&D RCM Engineering Committee will pursue this issue and ensure that a workable system is developed.
- 5. More communication between Generation North/South and HVDC RCM Groups and the T&D RCM Engineering Committee is required to share RCM experience, particularly where there is common equipment. These groups will be invited to meetings of the Committee and are now included on the e-mail list for the TSS Alerts regarding the Technical Support Services Web Site.



Customer Service and Distribution Internal Manual

Document Owner Last Revised Next Revision Date Michel Morin March 2014 December2016

## **Overhead Distribution Line Refurbishment**





## Introduction

The replacement of aging assets approaching their "end of life" is anticipated to be substantial and will require significantly higher replacement rates to maintain the distribution system performance over the next 20 years. Distribution Asset Maintenance Department has been continuously improving the strategy to effectively manage these assets through a "Line Refurbishment Program".

The Line Refurbishment program is funded by Distribution Asset Maintenance with the primary customer being Customer Service Operations. Additional stakeholders within the Customer Service & Distribution business unit include "Distribution Engineering & Construction". Corporate Finance is largely involved from outside the business unit. Success of each project within the program is dependent upon a collaborative effort from all departments.

The intent of this manual is to communicate the development and current practices of the "Overhead Line Refurbishment Program".



### Background

Manitoba Hydro has always completed maintenance or system improvements on the distribution system. Historically these improvements tended to be more reactive rather than a planned approach. The changing of business practices over the recent years demanding greater accountability and resource management has caused us to continuously look for ways to improve upon all aspects of our distribution maintenance. Essentially what is required is a "Refurbishment" of the plant that was originally installed between 1940 & 1960 under the "Rural Electrification" program. This Overhead Line Refurbishment program has to take into consideration factors such as reliability, risk and customers being served for each section of distribution being considered for the program.

Technological advancements and corporate alignment have better enabled us to share industry best practices both internally and worldwide. Customer Service Operations consisted of 72 Districts and following realignment in 2007 our Operations are coordinated through 20 Customer Service Centers. This realignment combined with the Distribution Maintenance Planning System (DMPS) and the Mobile Workforce Management (MWM) system has provided a more consistent application toward identifying, planning and scheduling of required maintenance on 66KV and below distribution.



## **Definition of Line Refurbishment (overhead)**

Refurbishment of a section of distribution (66KV & below) in which the condition of the critical asset(s) have reached the end of life as identified by "CSO end of life criteria".

- Critical overhead distribution assets = poles, overhead conductors and overhead transformers <sup>i</sup>
- End of Life Criteria = evaluation of condition assessment via detailed feeder inspection & information gathered on e-form 2201



## **Overhead Line Refurbishment**

# Index

| 1. | Identifying Overhead Line Refurbishment Requirements |    |
|----|------------------------------------------------------|----|
|    | 1.1. <u>Detailed Feeder Inspections</u>              | .6 |
|    | 1.2. Reliability/Reactive Based                      | .7 |

#### 2. Planning the Project

| 2.1. Line Refurbishment Flowchart                                    | 8       |
|----------------------------------------------------------------------|---------|
| 2.2. Determining Which Section of Line to Submit                     | 9       |
| 2.3. Considering Customers, Condition & Reliability                  | 10 - 14 |
| 2.4. Completing the Overhead Distribution Project Request form       | 15      |
| 2.5. Accessing Dist. Outage Performance Reporting Systems (DOPRS)    |         |
| 2.6. Accessing DMPS Worst Performing Feeder Report                   | 21 – 23 |
| 2.7. Accessing Corporate Feeder Performance                          | 24 – 25 |
| 2.8. Accessing System Average Interruption Duration Index (c2) SAIDI | 26 - 27 |

| З. | Processing the Order                              |    |
|----|---------------------------------------------------|----|
|    | 3.1. Capital Order Flow                           | 25 |
|    | 3.2. Prioritizing the Projects                    | 26 |
|    | 3.3. Overhead Distribution Project Database       |    |
|    | 3.4. Corporate Finance Role                       | 27 |
|    | 3.5. Distribution Engineering Role & Requirements |    |

| 4. | Request for | Construction | 29 | 9 |
|----|-------------|--------------|----|---|
|----|-------------|--------------|----|---|

| <b>5</b> . I | Management & Reporting | 29 | ) |
|--------------|------------------------|----|---|
|--------------|------------------------|----|---|

- 1. Identifying Overhead Line Refurbishment Requirements
  - 1.1. Detailed Feeder Inspections
  - Planned condition assessments of the pole asset s are completed during these inspections.
  - Distribution identified as having "high priority pole condition" will be considered for line refurbishment





#### 1.2. Reliability /Reactive Based Projects

- Unplanned assessment driven by customer reliability issues which identifies sections of distribution with "high priority pole condition"
- Distribution identified as having met "end of life" will be considered for line refurbishment

#### 2. Planning The Project

#### 2.1. Line Refurbishment Flowchart



- 2.2. Determining Which Section of Line to Submit, Considering;
- 2.2.1. Asset Condition As determined during "Detailed Feeder Inspection"

#### 2.2.2. Customer Criticality

- Banner is the resource to identify the following;
  - Critical Services
  - Major/Key Accounts
  - Major Residential & Small to Medium Businesses
  - Remaining Customers

2.2.3. Electrical Performance .....

- Distribution Maintenance Planning System (DMPS)
- Distribution Performance
  - Quarterly Reporting Corporately on Feeder Performance & System Average Interruption Duration Index (SAIDI c2)
  - Feeder Performance within the CSC (DOPRS)








### 2.3. e-form2201

| Wor<br>Rev 13 12<br>193<br>NOTE: This form<br>inspectio | Click here for<br>kflow Instruct<br>n is to be used to<br>ons. All fields be | or<br>tions<br>OV<br>for initiati<br>fore Con | <b>ERHEA</b><br>ng line refurbi<br>npleted by (Ne | <mark>D DIS'</mark><br>ishment,<br>etwork au | TRI<br>insula<br>ithenti              | BUT<br>ting, in<br>icated s | ION<br>tegrat | PRO<br>ed pole r<br>ure) are i | <mark>JECT</mark><br>na intenar<br>mand <i>a</i> tor | <mark>REQU</mark><br>nce, stree<br>ry. | J <b>EST</b><br>2t lighting | & work r            | esulting f   | irom detail<br>Tracki | ed feeα<br>ng ID | 1er |
|---------------------------------------------------------|------------------------------------------------------------------------------|-----------------------------------------------|---------------------------------------------------|----------------------------------------------|---------------------------------------|-----------------------------|---------------|--------------------------------|------------------------------------------------------|----------------------------------------|-----------------------------|---------------------|--------------|-----------------------|------------------|-----|
| DESCRIPTIC<br>REQUEST                                   | N<br>yyyy mm dd                                                              | Area                                          |                                                   | C:                                           | SCnar                                 | ne                          |               | 1                              | Program re                                           | ame                                    |                             |                     |              |                       |                  |     |
| DATE<br>Name of project                                 | 2014 02 28                                                                   |                                               |                                                   | ما                                           | cation                                |                             |               |                                |                                                      |                                        |                             |                     |              |                       |                  |     |
|                                                         |                                                                              |                                               |                                                   |                                              |                                       |                             |               |                                |                                                      |                                        |                             |                     |              |                       |                  |     |
|                                                         | *                                                                            | 0                                             | Pole tag no.                                      | FIRST                                        |                                       | LAS                         | т             | Feed                           | ler no.or l                                          | ine no.                                |                             |                     |              |                       |                  |     |
| Average span le                                         | angth                                                                        | Conducto                                      | or type                                           | Age                                          | ofline                                | _                           |               | Last IRM i                     | nspection                                            |                                        | Severe ice                  | e area              |              | ∏ Yes                 |                  | 1 N |
| Known mainten:                                          | ance opportunity                                                             | 1                                             |                                                   | Cons                                         | structio                              | n type                      |               |                                | Se                                                   | nsitive are                            | a                           | F                   | vironment    | al impact             |                  |     |
|                                                         |                                                                              |                                               |                                                   |                                              | Fill i                                | n or ma                     | dify th       | he fields                      | below.                                               |                                        |                             |                     |              |                       |                  |     |
| ELECTRICAL                                              | . PERFORMAN                                                                  | ICE - RE                                      | LIABILITY                                         |                                              | 1                                     | NIZ0                        | la            |                                |                                                      |                                        |                             |                     |              |                       | NL               |     |
| % capacity in wi                                        | nich the section o                                                           | tline is op                                   | erating at                                        |                                              | _                                     | NIA                         |               | orporate 1                     | eeoterpent                                           | ormance                                |                             |                     |              |                       | N/               | A   |
| Use Distribution                                        | ontage concern on                                                            | or downst                                     | ream oftnisline                                   | 27                                           |                                       |                             | - 10          | ADLo2                          | rpenorma                                             | nce                                    |                             |                     |              |                       | N/               |     |
| area with electri                                       | cal protection con                                                           | tinea tris j<br>cerns?                        | piece offine as                                   | part ofan                                    |                                       |                             | ĥ             | MPS Out:                       | age Analys                                           | is @area                               | level                       |                     |              |                       | - N/             | Â   |
| Are there any pr                                        | roposed plans in p                                                           | lace that (                                   | vill affect this lir                              | ne : Engine                                  | ering a                               | / <b>R</b> annir            | - <u>-</u> -  |                                |                                                      |                                        |                             |                     |              |                       |                  |     |
|                                                         |                                                                              |                                               |                                                   |                                              |                                       |                             |               |                                |                                                      |                                        |                             |                     |              |                       |                  |     |
| PHYSICAL C                                              | ONDITION                                                                     |                                               |                                                   |                                              |                                       | Ma                          | hu.           | A 1 14                         |                                                      |                                        |                             |                     |              |                       |                  |     |
| Radial feed                                             |                                                                              |                                               |                                                   |                                              |                                       | NO                          | No.c          | ot poles id                    | entified for                                         | reinforcer                             | nent                        |                     |              |                       | $\rightarrow$    |     |
| Atternate supply                                        | /                                                                            |                                               |                                                   |                                              |                                       | NO                          | No.c          | of IPM reje                    | ect or dang                                          | polesio                                | lentified                   |                     |              |                       | $\rightarrow$    | 0   |
| Alignment cono                                          | ems                                                                          |                                               |                                                   |                                              |                                       |                             | No.c          | ofpoles wi                     | ith compro                                           | mised sett                             | ing depth                   |                     |              |                       | $\rightarrow$    | 0   |
| Meets 50°C dea                                          | arance                                                                       |                                               | Meets ice load                                    | clearance                                    |                                       |                             | No.c          | ofpoles wi                     | ith Shell R                                          | at                                     | 1                           | Not App             | licable      |                       |                  | 0   |
| OB insulators                                           |                                                                              |                                               |                                                   |                                              |                                       | No                          | No.c          | ofpoles wi                     | ith Rock S                                           | et deficien                            | cies                        | Not                 | t Applics    | able                  |                  | 0   |
| Crossing agricu                                         | ltural land                                                                  |                                               |                                                   |                                              |                                       |                             | Defe          | ative stree                    | et lights ide                                        | ntified                                |                             | Not                 | Applical     | ble                   |                  | 0   |
| PROJECT PI                                              | ROJECTIONS                                                                   |                                               |                                                   |                                              | understand and a low interstanding of |                             |               |                                |                                                      |                                        |                             |                     |              |                       |                  |     |
| High level estim                                        | ate                                                                          |                                               | W                                                 | /onk to be o                                 | omple                                 | ted by                      |               | 0                              |                                                      | Speciali                               | zed equipm                  | ne <b>nt r</b> equi | ired         |                       |                  |     |
| CUSTOMER                                                | - RELIABILITY                                                                |                                               |                                                   |                                              |                                       |                             | ha i          |                                |                                                      |                                        |                             |                     |              | 1                     |                  |     |
| No.of condition                                         | related outages I                                                            | n past 241                                    | Thomas                                            |                                              |                                       |                             | majo          | miyorcus                       | tomers sup                                           | ppileo are                             |                             |                     |              |                       |                  |     |
| No.ofspanswi                                            | th vegetation cond                                                           | emsthat                                       | could be elimina                                  | ated                                         |                                       | 0                           | No.c          | of custome                     | er supplied                                          |                                        |                             |                     |              |                       |                  |     |
| No.ofkeyacco                                            | unt customers sup                                                            | oplied                                        |                                                   |                                              |                                       | 0                           | Is au         | storner ou                     | ined back-                                           | -up availat                            | le?                         |                     |              |                       |                  |     |
| No.of major ac                                          | count customers s                                                            | upplied                                       |                                                   |                                              |                                       | 0                           | ls au         | storner ou                     | ined back-                                           | -up availab                            | le?                         |                     |              |                       |                  |     |
| .No.ofhospital (                                        | sustomers supplie                                                            | d                                             |                                                   |                                              |                                       | 0                           | ls cu         | stomenou                       | ined back-                                           | -up availab                            | le?                         |                     |              |                       |                  |     |
| . No.oflife suppo                                       | ort customers sup                                                            | plied                                         |                                                   |                                              |                                       | 0                           | ls cu         | storner ou                     | uned back-                                           | ·up availat                            | le?                         |                     |              |                       |                  |     |
| Access?                                                 |                                                                              |                                               |                                                   |                                              |                                       |                             |               |                                |                                                      |                                        |                             |                     |              |                       |                  |     |
| Project descript                                        | ails                                                                         |                                               |                                                   |                                              |                                       |                             |               |                                |                                                      |                                        |                             |                     |              |                       |                  |     |
| Completed by 1                                          | (Network authent                                                             | icate d sig                                   | nature)                                           | Ŋ                                            | 'WY                                   | mm                          | dd .          | Approved<br>authentic :        | l by (Supe<br>ited signat                            | rvisor/Ser<br>bure)                    | uor Planner                 | r)(Netwo            | rk           | >>>>                  | mn               | (   |
| Approved by ()<br>authenticated s                       | CSO Coordinator<br>ignature)                                                 | )(Networ                                      | k                                                 | y,                                           | ny                                    | mm                          | dd            | Project Cl                     | assified as                                          | :"B" CSO                               |                             |                     |              | Yes                   |                  | - [ |
| Reviewed by ()<br>authenticated s                       | DAM - Electric F<br>ignature)                                                | rogram C                                      | oordinator)(Ne                                    | twork y                                      | m                                     | mm                          | dd            | Electron<br>p <i>a</i> sswoi   | iic signat<br>rd.                                    | ures: C or                             | nplete las <sup>.</sup>     | t. Double           | e-click to : | sign and e            | nter yo          | our |
| Finance:                                                |                                                                              |                                               |                                                   |                                              |                                       |                             |               |                                |                                                      |                                        |                             |                     |              |                       |                  | _   |
| IM. NODE NO.                                            | :                                                                            | W                                             | 9S NO.:                                           |                                              |                                       | Network                     | no.           | Review                         | redby (Fi                                            | nance Cor                              | dact)                       |                     |              | 1,000                 | mm               | đ   |
| Distribution                                            | Enginæring:                                                                  | I                                             |                                                   |                                              |                                       |                             |               |                                | Requir                                               | red comple                             | tion for des                | sign/RUC            | ES           | 7777                  | mm               | d   |
| Name of Desi                                            | ign Eng. or TA p                                                             | erformin                                      | gtask con                                         | MATE                                         | <i>yyy</i>                            | y mn                        | a dd          | Assign                         | ed by (9ŋ                                            | pervisor) (                            | NT signati                  | II.6)               |              | - 7777                | mn               | d   |
| Marga of Plan                                           | por porformina                                                               | tack                                          |                                                   |                                              |                                       | v mm                        | аа            | 0.ccim                         | .A 1 Q.                                              | ontricor) (                            | ATT cimests                 |                     |              |                       | mm               | đ   |

# **Overhead Line Refurbishment**

2.4. Accessing Distribution Outage Performance Reporting Systems

(DOPRS)

### See also link to training video

| 12 6                                    |                                                                    |                                   | Find:                                 | feng                                           |      |
|-----------------------------------------|--------------------------------------------------------------------|-----------------------------------|---------------------------------------|------------------------------------------------|------|
|                                         |                                                                    | o access :                        |                                       | People Documents/Sites                         |      |
| Power                                   |                                                                    | SC Feeder Performanc              | e                                     |                                                |      |
| MPower HR Centre + Business Centre      |                                                                    | AIDL c2                           | •                                     |                                                |      |
| Onderland Harles                        |                                                                    | MPS Outage Analysis               |                                       |                                                | _    |
| Quick Links                             | Hydrogram 🗳                                                        | MP 5 Outage Analysis              |                                       |                                                |      |
| Quick Links Map                         |                                                                    | Commercial Sales force ex         | pands into Brandon                    | and Steinbach                                  |      |
| Corporate Resources                     |                                                                    | December 10                       |                                       |                                                |      |
| Human Resources                         |                                                                    | The Power Smart Commercial Sales  | s force added two positions           | dedicated to Power Smart sales in              |      |
| Employee Interests                      |                                                                    | Brandon and Steinbach.            |                                       |                                                |      |
| Service Areas                           |                                                                    |                                   |                                       |                                                |      |
| Business Tools                          | 17                                                                 |                                   |                                       |                                                |      |
| Newsletters                             |                                                                    |                                   |                                       |                                                |      |
| Internet Links                          |                                                                    |                                   |                                       |                                                |      |
| Ore Objects                             |                                                                    |                                   |                                       |                                                |      |
| Org Charts                              | City of Winnipeg fitness passe                                     | s 2014                            | New application for capt              | turing complaints, claims and                  |      |
| Business Units Sites                    | December 11<br>Discounted individual fitness on                    | rs memberships for 2014 are now   | December 6                            |                                                |      |
| ' President & CEO                       | available for purchase.                                            | as memberships for 2014 are now   | The existing corporate reg            | gistry for complaints, claims and              |      |
| * Corporate Relations                   |                                                                    |                                   | compliments from externa              | al customers will be migrated on               |      |
| Customer Care & Energy Conservation     |                                                                    |                                   | December 13.                          |                                                |      |
| Customer Service & Distribution         | Working safely will help Joann                                     | explore Europe                    | Staff Bulletin — Annual a<br>vacation | allotment – benefit credits, HSA and           |      |
| Finance & Regulatory                    | Joann Richter (Customer Servio                                     | e Operations) understands the     | December 6                            |                                                |      |
| * General Counsel & Corporate Secretary | importance of staying safe so sh                                   | e can fulfill her life dreams.    | The 2014 annual allotme               | ent period for the Benefit Credit –            |      |
| Generation Operations                   |                                                                    |                                   | HOAV VACATION DENETIT DE              | gins in January.                               |      |
| • HR & Corporate Services               | Why Jana-Rae encourages you                                        | I to be someone's holiday miracle | Reminder: last days for (             | Christmas Cheer Board Collections              |      |
| * Major Capital Projects                | December 5                                                         |                                   | December 5                            | leasting as being allocated and                |      |
| Transmission                            | For Jana-Rae, donating blood v<br>support her mother fight cancer. | vas an action sne could take, to  | day, Tuesday, December                | constions are being collected until end<br>10. | 1 OT |
|                                         |                                                                    |                                   |                                       |                                                |      |

# Overhead Line Refurbishment

| MPower HR Centre Business C                                        | Centre                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|--------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Home   myDistrict   myMaterials                                    | s & Services                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Home                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| I F                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Detailed Navigation                                                | MATERIALS & SERVICES                                                                                                                                                                                                                                                                                                                                                                                                                   |
| <ul> <li>myMaterials &amp; Services</li> <li>myDistrict</li> </ul> | The myMaterials & Services page is designed to give you access to the wide variety of services available at Manitoba Hydro. This site will provide you with access to the Central Stores On-Line Catalogue as well as to links for services areas such as Central Stores, Haulage, Purchasing, Mail & Printing Services, Safety, Library and more. The site also contains links to a variety of materials related policy & procedures. |
|                                                                    | myDistrict provides Customer Service Operations staff with a single location to access Web-based information and applications of specific importance to you. Call it "Web<br>Central" for all things Operations.                                                                                                                                                                                                                       |
|                                                                    | Please Note: Certain staff may have access to both the My Materials & Services and My District pages. However the My District pages is restricted to Customer Service and Operations staff only.                                                                                                                                                                                                                                       |







| 14 <b>4</b> 3 c | f6 🕨 🕅                                                                             | 100%                      | Find                        | Next Select a fo      | rmat 💌             | Export 🚺             | 3                         |                     |                  |  |  |  |  |  |  |
|-----------------|------------------------------------------------------------------------------------|---------------------------|-----------------------------|-----------------------|--------------------|----------------------|---------------------------|---------------------|------------------|--|--|--|--|--|--|
| Feeder Per      | eeder Performance for: WESTMAN By Customer Minutes from: 2012-01-01 to: 2012-12-31 |                           |                             |                       |                    |                      |                           |                     |                  |  |  |  |  |  |  |
|                 |                                                                                    | From: 2012-01             | l-01 to: 2012-12-31         |                       |                    | 5-Year Ave           | rage values for su        | pplied range        |                  |  |  |  |  |  |  |
| District 🗧      | Feeder                                                                             | Number ≑<br>of<br>Outages | Customer ≑<br>Interruptions | Customer ≑<br>Minutes | SAID^C2 ⊜<br>(min) | Number of<br>Outages | Customer<br>Interruptions | Customer<br>Minutes | SAID^C2<br>(min) |  |  |  |  |  |  |
| HAMIOTA         | HA25-4                                                                             | 13                        | 391                         | 211,060               | 0.39               | 8.0                  | 234.2                     | 64,194              | 0.12             |  |  |  |  |  |  |
| BRANDON         | LN12-4                                                                             | 3                         | 3,109                       | 172,225               | 0.32               | 1.0                  | 1,040.2                   | 56,206              | 0.18             |  |  |  |  |  |  |
| VIRDEN          | <u>SV25-3</u>                                                                      | 8                         | 857                         | 142,870               | 0.26               | 7.8                  | 420.2                     | 79,138              | 0.15             |  |  |  |  |  |  |
| BRANDON         | CP12-16                                                                            | 1                         | 828                         | 124,200               | 0.23               | 0.4                  | 171.6                     | 25,860              | 0.12             |  |  |  |  |  |  |
| VIRDEN          | VW25-5                                                                             | 2                         | 840                         | 122,110               | 0.22               | 0.6                  | 173.2                     | 25,384              | 0.12             |  |  |  |  |  |  |
| PILOT MOUND     | CT12-04                                                                            | 6                         | 486                         | 117,381               | 0.22               | 8.8                  | 269.2                     | 49,828              | 0.09             |  |  |  |  |  |  |
| BRANDON         | SH04-1                                                                             | 1                         | 331                         | 89,039                | 0.16               | 0.2                  | 66.2                      | 17,808              | 0.16             |  |  |  |  |  |  |
| RESTON          | RE12-4                                                                             | 3                         | 214                         | 83,740                | 0.15               | 2.8                  | 113.4                     | 22,948              | 0.04             |  |  |  |  |  |  |
| KILLARNEY       | NL12-6                                                                             | 2                         | 187                         | 66,810                | 0.12               | 0.4                  | 37.4                      | 13,362              | 0.12             |  |  |  |  |  |  |
| BRANDON         | RS25-2                                                                             | 3                         | 1,445                       | 57,433                | 0.11               | 3.8                  | 880.4                     | 64,360              | 0.12             |  |  |  |  |  |  |
| VIRDEN          | CN25-04                                                                            | 4                         | 546                         | 56,543                | 0.10               | 0.8                  | 109.2                     | 11,309              | 0.10             |  |  |  |  |  |  |
| SOURIS          | HY25-2                                                                             | 1                         | 190                         | 56,050                | 0.10               | 1.8                  | 114.2                     | 23,750              | 0.07             |  |  |  |  |  |  |
| MELITA          | ML12-7                                                                             | 8                         | 410                         | 55,682                | 0.10               | 3.4                  | 138.0                     | 20,400              | 0.05             |  |  |  |  |  |  |
| VIRDEN          | OL25-3                                                                             | 4                         | 165                         | 53,460                | 0.10               | 2.6                  | 88.2                      | 22,836              | 0.04             |  |  |  |  |  |  |
| VIRDEN          | VS25-2                                                                             | 3                         | 560                         | 52,135                | 0.10               | 1.0                  | 150.8                     | 11,249              | 0.05             |  |  |  |  |  |  |
| BRANDON         | HP12-1                                                                             | 2                         | 471                         | 49,740                | 0.09               | 1.0                  | 194.2                     | 30,618              | 0.10             |  |  |  |  |  |  |
| BRANDON         | <u>BK12-2</u>                                                                      | 1                         | 102                         | 47,736                | 0.09               | 0.2                  | 20.4                      | 9,547               | 0.09             |  |  |  |  |  |  |
|                 | 01 05 F                                                                            |                           | 070                         | 17 000                |                    |                      | 075.4                     |                     | 1                |  |  |  |  |  |  |

(based on outage & outstanding maintenance requirements)

2.5. Access to DMPS Worst performing Feeder

| Welcome Burt Shewfelt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| vices                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| District provides Customer Service Operations staff with a single location to access Web-based information and applications of specific importance to you. Call it "Web Central" for all gs Operations.<br>a new frontier, mcDistrict will grow and mature based on staff needs and your feedback. Currently, myDistrict contains:<br>a new forther, internal/external links to commonly used sources of information.<br>latives - links to sites/documents outlining major CSO projects in development.<br>Mications - online operations-based tools to make your job easier. |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |



# Overhead Line Refurbishment

| MP | S Dashboard R                                                                                                                 | epor | ts                                                                                                                         |   |                                                                                                                |
|----|-------------------------------------------------------------------------------------------------------------------------------|------|----------------------------------------------------------------------------------------------------------------------------|---|----------------------------------------------------------------------------------------------------------------|
| •  | 1.1 - Avg. Notification Life Time<br>Average notification life time analysis<br>and trend                                     |      | 1.2 - Avg. Notification<br>Understand how many days to<br>complete all outstanding notifications                           |   | 1.23 - Inspection Order Status<br>Inspection orders completed within<br>current fiscal year vs all outstanding |
|    | 1.24 - Inspection Order Items<br>Underground inspection order items<br>completed and created                                  |      | 1.3 - Notifications Creation<br>Number of notifications created for<br>selected period and the trend for past<br>13 months |   | 1.4 - Outstanding Cost<br>Planned costs for outstanding<br>notifications and inspection orders                 |
| •  | 1.5 - Maintenance Order Working<br>Planned versus actual time analysis<br>for maintenance orders                              |      | 1.6 Backlog Hours<br>Backlog hours for inspection orders<br>and repair notifications                                       | • | 1.8 - Outage Analysis<br>Top 10 vorst performing feeders with<br>maintenance costs                             |
| •  | <ul> <li>1.9 - Outstanding D2</li> <li>Number of outstanding D2</li> <li>notifications by priority and object part</li> </ul> |      |                                                                                                                            |   |                                                                                                                |



#### 2.6. Accessing Corporate Feeder Performance





#### Feeder Performance

- Circuits are present on this list if they meet at least two of the three following criteria: 2013 Contribution to SAIDI (SAIDI ^C2) greater 0.5 minutes Projected 3 year future (2015) SAIDI ^C2 based on standard linear regression formulas greater than 0.5 minutes

 Total SAID/C2 in the last five years greater than 1.0 minutes
 Single transformer outages are not included in this report. For more information on feeder performance go
to Distribution Outage Performance Reporting System <a href="http://esdapps.hydro.mb.ca/distapps/doprs/">http://esdapps.hydro.mb.ca/distapps/doprs/</a> Default.aspx

|               |         | Number of   | Customer          | Customer    |              | SAIDI^C2   |              |
|---------------|---------|-------------|-------------------|-------------|--------------|------------|--------------|
| District      | Feeder  | outages YTD | Interruptions YTD | Minutes YTD | YTD SAIDI^C2 | since 2009 | 5 year SAIDI |
| Keewatin      | L17/18  | 2           | 13903             | 1952386     | 3.58         | 13.67      | $\rangle$    |
| Fort Garry    | H56     | 9           | 17,187            | 1,284,800   | 2.34         | 4.58       | <            |
| Lac du Bonnet | LDB25-1 | 11          | 5,396             | 468,385     | 0.85         | 6.64       | $\langle$    |
| Gimli         | FBF12-4 | 4           | 2,096             | 477,799     | 0.87         | 2.09       |              |
| Berens River  | LG12-3  | 1           | 298               | 500,640     | 0.91         | 1.69       |              |
| St Boniface   | V45     | 0           | 0                 | 0           | 0            | 3.12       |              |
| River East    | SD791   | 3           | 1,980             | 354,715     | 0.65         | 1.52       |              |
| Falcon Lake   | STL12-2 | 3           | 520               | 118,349     | 0.22         | 2.55       | )            |
| St Martin     | MA25-1  | 6           | 768               | 281,835     | 0.51         | 1.94       | <            |
| Keewatin      | CO271   | 1           | 1,452             | 304,920     | 0.56         | 1.40       | $\langle$    |
| City Centre   | 16U161  | 2           | 758               | 227,976     | 0.42         | 1.83       | <            |
| Selkirk       | MY12-6  | 4           | 3,082             | 331,921     | 0.6          | 1.12       |              |
| Powerview     | GL12-9  | 6           | 1,681             | 376,024     | 0.68         | 1.18       | <            |
| St Boniface   | P78     | 2           | 5,660             | 280,138     | 0.51         | 1.33       |              |
| Powerview     | GB12-4  | 2           | 1,525             | 267,890     | 0.49         | 1.33       | $\langle$    |
| Keewatin      | J54     | 6           | 879               | 159,060     | 0.29         | 1.18       | >            |
| St Boniface   | GP12-09 | 2           | 571               | 51,632      | 0.09         | 1.44       | $\langle$    |
| Steinbach     | LBE12-4 | 5           | 1,004             | 188,377     | 0.34         | 1.15       | $\langle$    |
| Steinbach     | RD12-10 | 0           | 0                 | 0           | 0            | 1.33       | ~            |

## 2.7. To Access SAIDI c2 Report use DOPRS

| Ψ       | Ma<br>Jyo      | nit<br>dro | ob        | a         | DIS               | STRI                | BUTIO             | Ν Ουτ   | AGE        | Per            | RFO       | RM/     | ANC       | e R       | EPO        | RTII | NG | SY | STE | М |  |  |
|---------|----------------|------------|-----------|-----------|-------------------|---------------------|-------------------|---------|------------|----------------|-----------|---------|-----------|-----------|------------|------|----|----|-----|---|--|--|
| Contr   | rol Pan        | el         | Dasl      | hBoard    |                   | Repor               | rts Chart         | Reports |            | Home           |           | About   |           |           |            |      |    |    |     |   |  |  |
| Select  | report         | from t     | the list: | Aco       | cess v<br>ntribut | ia Repo<br>tions by | orts then<br>area | 4       | Feede      | er Cont        | ributio   | ns By ( | Operati   | ons A     | rea        |      | *  |    |     |   |  |  |
| Start D | )ate:          |            |           |           |                   |                     |                   |         | End Da     | ate:           |           |         |           |           |            |      |    |    |     |   |  |  |
| 2013    |                | *          |           |           |                   |                     |                   |         | 2013       |                | *         |         |           |           |            |      |    |    |     |   |  |  |
| Pleas   | e Mak          | e Sele     | ction     |           | 1                 | -                   |                   |         | Pleas      | e Make         | e Sele    | ction   |           | ~         | •          |      |    |    |     |   |  |  |
| Nov     | D              | ecer       | nber      | 201       | . <mark>3</mark>  | <u>Jan</u>          |                   |         | <u>Nov</u> | D              | ecer      | nber    | 201       | 3         | <u>Jan</u> |      |    |    |     |   |  |  |
| Sun     | Mon            | Tue        | Wed       | Thu       | Fri               | Sat                 |                   |         | Sun        | Mon            | Tue       | Wed     | Thu       | Fri       | Sat        |      |    |    |     |   |  |  |
| 24      | <u>25</u>      | <u>26</u>  | <u>27</u> | <u>28</u> | <u>29</u>         | <u>30</u>           |                   |         | <u>24</u>  | <u>25</u>      | <u>26</u> | 27      | <u>28</u> | <u>29</u> | <u>30</u>  |      |    |    |     |   |  |  |
| 1       | 2              | 3          | 4         | 5         | <u>6</u>          | <u>Z</u>            |                   |         | 1          | 2              | 3         | 4       | 5         | <u>6</u>  | Z          |      |    |    |     |   |  |  |
| 15      | <u>9</u><br>16 | 17         | 10        | 10        | 20                | 21                  |                   |         | 15         | <u>9</u><br>16 | 17        | 10      | 10        | 20        | 21         |      |    |    |     |   |  |  |
| 22      | 23             | 24         | 25        | 26        | 20                | 28                  |                   |         | 22         | 23             | 24        | 25      | 26        | 20        | 28         |      |    |    |     |   |  |  |
| 29      | 30             | 31         | 1         | 2         | 3                 | 4                   |                   |         | 29         | 30             | 31        | 1       | 2         | 3         | 4          |      |    |    |     |   |  |  |
|         |                |            |           |           |                   |                     |                   |         | Ge         | nerate         | Repor     | t       |           |           |            |      |    |    |     |   |  |  |





|                      |                | From: 2012-1              | 12-10 to: 2013-12-1           | 0                     |                 | 5-Year Ave           | rage values for s         | supplied range      |                  |
|----------------------|----------------|---------------------------|-------------------------------|-----------------------|-----------------|----------------------|---------------------------|---------------------|------------------|
| District 😫           | Feeder 🕀       | Number ‡<br>of<br>Outages | Customer 🗧 🕀<br>Interruptions | Customer :<br>Minutes | SAID^C2 ⊕ (min) | Number of<br>Outages | Customer<br>Interruptions | Customer<br>Minutes | SAID^C2<br>(min) |
| LAC DU<br>BONNET     | LDB25-1        | 18                        | 15,184                        | 1,975,544             | 3.60            | 223.2                | 128,401.2                 | 15,488,507          | 0.13             |
| FORT GARRY           | <u>H56</u>     | 9                         | 17,187                        | 1,284,800             | 2.34            | 18.0                 | 35,697.6                  | 2,593,539           | 0.26             |
| CITY CENTRE          | 415N14         | 1                         | 1,099                         | 587,965               | 1.07            | 0.4                  | 248.6                     | 121,913             | 0.56             |
| FALCON LAKE          | STL12-1        | 8                         | 4,107                         | 540,616               | 0.99            | 57.6                 | 21,908.8                  | 5,580,429           | 0.18             |
| CITY CENTRE          | 418N20         | 1                         | 1,009                         | 539,815               | 0.98            | 0.2                  | 201.8                     | 107,963             | 0.98             |
| BERENS RIVER         | LG12-3         | 1                         | 298                           | 500,640               | 0.91            | 0.6                  | 171.8                     | 184,510             | 0.57             |
| KEEWATIN             | <u>363N17</u>  | 1                         | 1,148                         | 492,780               | 0.90            | 0.2                  | 229.2                     | 98,556              | 0.90             |
| STEINBACH            | RD12-8         | 5                         | 946                           | 485,919               | 0.89            | 8.0                  | 1,512.0                   | 608,229             | 0.14             |
| GIMLI                | FBF12-4        | 4                         | 2,096                         | 477,799               | 0.87            | 7.2                  | 2,840.8                   | 612,804             | 0.16             |
| RIVER EAST           | <u>SD791</u>   | 5                         | 3,511                         | 427,132               | 0.78            | 17.0                 | 9,017.0                   | 825,909             | 0.09             |
| BRANDON              | CP12-14        | 1                         | 1,284                         | 398,040               | 0.73            | 0.6                  | 629.0                     | 131,727             | 0.41             |
| POWERVIEW            | GL12-9         | 6                         | 1,681                         | 376,024               | 0.69            | 15.6                 | 3,488.4                   | 822,268             | 0.10             |
| ST BONIFACE          | <u>OB12-4</u>  | 3                         | 1,255                         | 341,030               | 0.62            | 6.6                  | 1,837.8                   | 300,755             | 0.08             |
| ST MARTIN            | MA25-1         | 7                         | 1,120                         | 338,859               | 0.62            | 57.4                 | 8,288.0                   | 1,488,002           | 0.05             |
| SELKIRK              | <u>MY12-6</u>  | 4                         | 3,082                         | 331,921               | 0.60            | 12.0                 | 5,511.2                   | 490,023             | 0.08             |
| EEWATIN              | CO271          | 1                         | 1,452                         | 304,920               | 0.56            | 0.8                  | 754.0                     | 151,614             | 0.35             |
| STEINBACH            | RD12-10        | 2                         | 1,428                         | 301,037               | 0.55            | 5.2                  | 2,074.0                   | 287,055             | 0.10             |
| ST BONIFACE          | <u>V45</u>     | 2                         | 2,734                         | 283,929               | 0.52            | 7.2                  | 3,301.6                   | 303,369             | 0.08             |
| POWERVIEW            | <u>GB12-4</u>  | 2                         | 1,525                         | 267,890               | 0.49            | 4.0                  | 2,334.4                   | 286,730             | 0.13             |
| KEEWATIN             | <u>H56</u>     | 1                         | 2,853                         | 265,572               | 0.48            | 0.2                  | 530.6                     | 53,114              | 0.48             |
| /IRDEN               | OL25-5         | 1                         | 431                           | 258,600               | 0.47            | 1.8                  | 354.0                     | 72,488              | 0.07             |
| SLAND LAKE           | WA25-3         | 1                         | 259                           | 258,410               | 0.47            | 0.8                  | 108.2                     | 87,600              | 0.20             |
| GODS LAKE<br>NARROWS | <u>GLN25-2</u> | 1                         | 222                           | 253,080               | 0.46            | 1.2                  | 206.8                     | 81,352              | 0.13             |
| CITY CENTRE          | 16U161         | 2                         | 758                           | 227,978               | 0.42            | 4.4                  | 2,559.6                   | 320,920             | 0.14             |
| KEEWATIN             | CO285          | 3                         | 1,413                         | 223,245               | 0.41            | 10.2                 | 4,774.2                   | 596,582             | 0.11             |
| ALCON LAKE           | STL12-6        | 5                         | 1,076                         | 222,132               | 0.40            | 53.0                 | 7,088.0                   | 4,390,578           | 0.15             |
| RIVER EAST           | DY444          | 1                         | 1,838                         | 220,320               | 0.40            | 0.6                  | 735.8                     | 108,545             | 0.34             |
| ARBORG               | RN25-3         | 3                         | 1,138                         | 218,250               | 0.40            | 3.6                  | 1,135.2                   | 214,953             | 0.11             |
| SELKIRK              | PE12-4         | 2                         | 1,058                         | 217,440               | 0.40            | 4.8                  | 2,058.4                   | 241,816             | 0.09             |
| RICKSON              | OE12-7         | 3                         | 1,128                         | 212,080               | 0.39            | 35.4                 | 6,928.2                   | 1,280,764           | 0.07             |
| RIVER EAST           | AD807          | 3                         | 1,683                         | 208,020               | 0.38            | 2.4                  | 1,063.8                   | 137,448             | 0.10             |
| PORTAGE              | PLR25-1        | 4                         | 1,151                         | 198.585               | 0.36            | 21.6                 | 2.570.4                   | 317.724             | 0.03             |

### 3. Processing the Order 3.1. Capital Order Flow



### 3.2. Prioritize the Line Refurbishment Projects

- The Distribution Asset Maintenance, Electric Program Coordinator will meet with the Customer Service Operations Coordinators to review projects for their areas on a quarterly basis to select the projects that shall be submitted to Distribution Engineering for design & RUCES estimates.
- These projects will be selected using the weighted e-form giving consideration to all projects throughout the province to distribute the workload for all resources.

### 3.3. Overhead Distribution Project Database

*There is an Access database built behind the e-form 2201 for tracking & reporting purposes.* 

| -9 | E2201Search dbo_E22   | 01 🔟 dbo_E | E2201_ne                 | w         |               |            |                 |                 |                        |              |             |            |                |           |               | ×     |
|----|-----------------------|------------|--------------------------|-----------|---------------|------------|-----------------|-----------------|------------------------|--------------|-------------|------------|----------------|-----------|---------------|-------|
|    | DateTimeStamp 👻       | TrackingID | <ul> <li>Requ</li> </ul> | estDat( + | Area 🔹        | CSCname -  | Projectname +   | NameOfProj 🔹    | Location -             | NumOfPole: • | FirstPole + | LastPole 🔹 | DefineLine 🔹   | AvgSpan 🔸 | ConductorTy + | AgeLi |
|    | 4/3/2013 3:14:10 PM   | -          | 4                        | 4/3/2013  | Parkland      | Russell    | DFI Line-refurb | FI-LR-SL 12-4   | Shoal Lake             | 7            | 0224472     | 0227236    | SL 12-4        | 90        | 3/13          | 60-70 |
|    | 4/3/2013 2:22:15 PM   |            | 5                        | 3/7/2013  | Parkland      | Russell    | DFI Line-refurb | RUS LR 12-15    | West of Shoal I        | 18           | 0225025     | 226969     | SL 12-1        | 90        | 3/13          | 60-70 |
|    | 4/4/2013 2:32:23 PM   |            | 6                        | 3/15/2013 | Winnipeg Wes  | Steinbach  | Line-refurbishr | STB 12-01       | RIEL RD                | 5            | 170405      | 170327     | R322           | 50        | 2A            | 60-70 |
|    | 4/4/2013 10:58:05 AM  |            | 8                        | 4/4/2013  | Eastman       | Morden     | DFI Line-refurb | MRD 12-15       | GV 8-3                 | 2            | 611611      | 616552     | GV 8-3         | 80        | 3/13          | 50-60 |
|    | 4/4/2013 1:39:46 PM   |            | 9                        | 4/4/2013  | Eastman       | Morden     | DFI Line-refurb | MRD 12-11       | Miami                  | 4            | 638836      | 663454     | MM 12-4        | 80        | 3/13          | 50-60 |
|    | 4/4/2013 1:47:46 PM   | 1          | 11                       | 4/4/2013  | Eastman       | Morden     | DFI Line-refurb | MRD 12-13       | Darlingford            | 6            | 463156      | 499199     | DF 12-1        | 70        | 3/13          | 50-60 |
|    | 4/4/2013 1:51:26 PM   | 1          | 13                       | 4/4/2013  | Eastman       | Morden     | DFI Line-refurb | MRD 12-16       | Graysville             | 17           | 637777      | 667961     | GV 8-2         | 80        | 3/13          | 50-60 |
|    | 4/4/2013 3:07:27 PM   | 1          | L4                       | 4/4/2013  | Eastman       | Morden     | DFI Line-refurb | MRD 12-17       | Carman                 | 19           | 608199      | 640061     | CN 25-2        | 80        | 3/13          | 50-60 |
|    | 4/4/2013 3:08:28 PM   | 1          | 16                       | 4/4/2013  | Eastman       | Morden     | Line-refurbishr | MRD 13-1        | Morden                 | 1            | 432266      | 432266     | WM 25-9        | 70        | 2A            | 50-60 |
|    | 4/9/2013 11:45:08 AM  | 1          | 17                       | 4/4/2013  | Parkland      | Swan River | Line-refurbishr | Line Refurbish  | NE 3-37-27             | 6            | 1031728     | 1031702    | VY 12-2        | 110       | 3/13          | 40-50 |
|    | 8/8/2013 7:51:30 AM   | 1          | 18                       | 4/4/2013  | Winnipeg Cent | Keewatin   | Line-refurbishr | KEE L.R 1301    | MCPHILLIPS STA         | 065          | 103322      | 286957     | 24KV LINE 17 & | 60        | Other         | 40-50 |
|    | 4/9/2013 11:39:37 AM  | 1          | 19                       | 4/8/2013  | Parkland      | Swan River | Line-refurbishr | LR 13-03        | NW 14-36-24 W          | 1            | 1043064     |            | MS 12-4        | 70        | 3/13          | 40-50 |
|    | 4/9/2013 11:34:02 AM  | 2          | 20                       | 4/8/2013  | Parkland      | Swan River | Line-refurbishr | LR 13-04        | River Road             | 9            | 1040325     | 1040345    | DR 12-2        | 50        | Other         | 40-50 |
|    | 4/12/2013 9:52:54 AM  | 2          | 23                       | 4/8/2013  | Parkland      | Russell    | Line-refurbishr | BARRET TAP/SI   | SE 35-18-28 W          | 10           | 0943257     | 0957538    | FN 12-7        | 100       | 3/13          | 50-60 |
|    | 4/19/2013 1:21:57 PM  | 2          | 24                       | 4/8/2013  | Westman       | Killarney  | Line-refurbishr | KIL 13-04       | Town of Dunre          | 11           | 0660308     | 0660272    | NE 12-2        | 50        | 2A            | 40-50 |
|    | 4/19/2013 1:15:42 PM  | 2          | 25                       | 4/8/2013  | Westman       | Killarney  | Line-refurbishr | KIL-13-07       | NW 27-6-12             | 1            | 0273958     |            | CR 08-6        | 90        | 3/13          | 40-50 |
|    | 4/11/2013 1:09:35 PM  | 3          | 31 4                     | 4/10/2013 | Parkland      | Neepawa    | Line-refurbishr | MD12-4/ ND12-   | SW 7-16-19W            | 1            |             | 0203563    | MD12-4/ ND12-  | 70        | Other         | <20   |
|    | 4/19/2013 2:35:38 PM  | 3          | 34 4                     | 4/12/2013 | Eastman       | Morden     | DFI Line-refurb | MRD 12-3        | Miami                  | 22           | 619109      | 667805     | MM12-6         | 80        | 3/13          | 50-60 |
|    | 4/23/2013 1:49:06 PM  | 3          | 37 4                     | 4/16/2013 | Westman       | Virden     | Line-refurbishr | VIR 13-01       | SE12-10-28W            | 2            | 348502      | 348503     | VW25-6         | 80        | 2A            | 50-60 |
|    | 4/17/2013 10:57:28 AM | 3          | 38 4                     | 4/16/2013 | Winnipeg Wes  | Fort Garry | Line-refurbishr | REPLACE 40' PC  | 11 BOWHILL LA          | 1            | 0339969     |            | RK415          | 50        | 2AP           | 50-60 |
|    | 4/19/2013 1:18:27 PM  | 3          | 39 4                     | 4/17/2013 | Westman       | Killarney  | Line-refurbishr | KIL 13-08       | Stockton               | 16           | 0619802     | 0619822    | GL 25-6        | 60        | 2A            | 40-50 |
|    | 5/14/2013 8:43:27 AM  | 4          | 40 4                     | 4/17/2013 | Westman       | Killarney  | Line-refurbishr | KIL 13-9        | Town of Holmf          | 8            | 0629515     | 0629522    | CT 12-2        | 50        | Other         | 40-50 |
|    | 4/19/2013 3:05:36 PM  | 4          | 43 4                     | 4/19/2013 | Parkland      | Dauphin    | Line-refurbishr | Dau12-23        | Grandview We           | 18           | 919-008     | 928-699    | DV12-2         | 100       | N/A           | 50-60 |
|    | 4/22/2013 7:26:25 AM  | 4          | 14 4                     | 4/19/2013 | Parkland      | Neepawa    | Line-refurbishr | NEE 13-01       | Back Lane 2nd a        | 1            | 0756643     |            | EN12-9         | 40        | 2A            | 40-50 |
|    | 4/22/2013 7:16:17 AM  | 4          | 45                       | 4/8/2013  | Westman       | Killarney  | DFI Line-refurb | KIL 13-02       | <b>Boissevain Dist</b> | 11           | 733170      | 733060     | BN 12-2        | 90        | 2A            | N/A   |
|    | 5/15/2013 11:52:25 AM | 4          | 17 4                     | 4/24/2013 | Parkland      | Dauphin    | Line-refurbishr | SE12-4          | SE12-4                 | 1            | 934-202     |            | SE12-4         | 110       | 3/13          | 50-60 |
|    | 5/14/2013 8:23:13 AM  | 6          | 50 4                     | 4/29/2013 | Interlake     | Portage    | Line-refurbishr | POR-LR-13-02    | W 34-12-10 PR          | 15           | 874613      | 885640     | MR12-7         | 100       | 3/13          | 50-60 |
|    | 5/14/2013 8:27:38 AM  | 6          | 51 4                     | 4/29/2013 | Interlake     | Portage    | Line-refurbishr | POR-LR-13-03    | W 14-12-10 N 1         | 12           | 862120      | 862094     | MR12-7         | 100       | 3/13          | 50-60 |
|    | 5/15/2013 11:44:37 AM | 6          | 52 4                     | 4/29/2013 | Interlake     | Portage    | Line-refurbishr | por-lr-13-04    | E 9-12-10 PR 35        | 5            | 863504      | 862086     | MR12-7         | 90        | Other         | 50-60 |
|    | 6/4/2013 7:16:53 AM   | 6          | 53                       | 5/23/2013 | Interlake     | Portage    | Line-refurbishr | POR-LR-13-05    | E 8-8-10 E 17-08       | 19           | 214002      | 213811     | TE 12-6        | 110       | 9D            | 50-60 |
|    | 5/2/2013 12:42:34 PM  | 6          | 54 4                     | 4/30/2013 | Westman       | Killarney  | Line-refurbishr | Fault idicators | Pilot Mound di         | 78           |             |            | PM 25-2 Unde   | 30        | Other         | 20-30 |
|    | 5/31/2013 10:16:43 AM | 6          | 59                       | 5/21/2013 | Parkland      | Russell    | DFI Line-refurb | RUS             | Shoal Lake             | 18           | 0225025     | 0226969    | SL12-1         | 90        | 9A            | 60-70 |
|    | 6/17/2013 1:22:57 PM  | 7          | 74                       | 6/7/2013  | Parkland      | Swan River | Line-refurbishr | SWAN RIVER LF   | sw 09-42-25 w          | 1            | 1012922     |            | mg 12-5        | 100       | 3/13          | 50-60 |
| *  |                       |            |                          |           |               |            |                 |                 |                        |              |             |            |                |           |               |       |

| 2201Search 🔳 dbo                                                                                                                                                                                             | _E2201 🛄 dbo                                                                                           | _E2201_new                                                                                                                                  |                                                                            |                                                                                                                                                                           |                      |                   |              |                                                                                                                |                                                    |                    |            |            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------------------|--------------|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------|--------------------|------------|------------|
|                                                                                                                                                                                                              | Year 20                                                                                                | 13 to 2013                                                                                                                                  | WBS                                                                        | no.                                                                                                                                                                       |                      | High le           | vel estimate |                                                                                                                |                                                    |                    |            |            |
| Area<br>Estiman<br>Interlake<br>Northman<br>Parkland<br>Westman<br>Winnipeg Cent<br>No. of condition<br>No. of key accou<br>No. of major acc<br>No. of hospital (<br>No. of hospital (<br>No. of ilife suppo | tral<br>related outages<br>ant customers su<br>count customers<br>customers suppl<br>ort customers sup | CSC Name<br>Arborg<br>Ashern<br>Brandon<br>City Centre<br>Dauphin<br>Fort Garry<br>in past 24 months<br>pplied<br>supplied<br>ied<br>pplied | Progr<br>Fault<br>Une-<br>Ohio<br>Othe<br>Integ<br>Stree<br>ec<br>ec<br>ec | am Name<br>Current Indicators<br>erfurbishment<br>Brass Insulators<br>r Insulator Projects<br>r Insulator Projects<br>rulats v<br>v<br>uuals v<br>uuals v<br>v<br>uuals v | Project<br>Yes<br>No | Classified as "B" | ' <u>CSO</u> | Completion Status<br>Originator<br>Supervisor/Senic<br>CSO Coordinator<br>DAM - Electric Pr<br>Finance Contact | Clear<br>Sea<br>Ex<br>or Planner<br>ogram Coordina | Field<br>rch<br>at |            |            |
| Results                                                                                                                                                                                                      |                                                                                                        | A A                                                                                                                                         |                                                                            |                                                                                                                                                                           |                      |                   |              |                                                                                                                |                                                    |                    |            |            |
| RequestDate                                                                                                                                                                                                  | TrackingID                                                                                             | Area                                                                                                                                        | CSCname                                                                    | Projectname                                                                                                                                                               |                      | NumOutages        | NumKeyAcc    | t NumMajorAcc                                                                                                  | t NumHosp                                          | NumLifeSuppo       | WBSNo      | HLEstimate |
| 6/19/2013                                                                                                                                                                                                    | 75                                                                                                     | Parkland                                                                                                                                    | Dauphin                                                                    | Line-refurbishment                                                                                                                                                        |                      | >6                | 0            | 0                                                                                                              | 1                                                  | 3                  |            | 3200       |
| 6/24/2013                                                                                                                                                                                                    | 76                                                                                                     | Westman                                                                                                                                     | Brandon                                                                    | Fault Current Indicators                                                                                                                                                  |                      | >6                | 0            | 0                                                                                                              | 0                                                  | 0                  | P21625     | 12000      |
| 7/2/2013                                                                                                                                                                                                     | 78                                                                                                     | Westman                                                                                                                                     | Brandon                                                                    | Fault Current Indicators                                                                                                                                                  |                      | 0-3               | 0            | 0                                                                                                              | 0                                                  | 0                  | P21625     | 1500       |
| 7/16/2013                                                                                                                                                                                                    | 81                                                                                                     | Winnipeg West                                                                                                                               | Fort Garry                                                                 | Ohio Brass Insulators                                                                                                                                                     |                      | 4-6               | 0            | 3                                                                                                              | 0                                                  | 0                  | P:21962    | 12600      |
|                                                                                                                                                                                                              |                                                                                                        |                                                                                                                                             |                                                                            |                                                                                                                                                                           |                      |                   |              |                                                                                                                |                                                    |                    |            |            |
| TOTAL HIGH L                                                                                                                                                                                                 | EVEL ESTIMAT                                                                                           | ТЕ 29300                                                                                                                                    |                                                                            |                                                                                                                                                                           |                      |                   |              |                                                                                                                |                                                    |                    |            |            |
|                                                                                                                                                                                                              |                                                                                                        |                                                                                                                                             |                                                                            |                                                                                                                                                                           |                      |                   |              |                                                                                                                |                                                    | Vi                 | ew Entries | Open Form  |

• Currently (September 2013) an excel <u>"Capital Program Tracking Report</u>" is also maintained by DAM/Electric Program Coordinator.

#### 3.4. Corporate Finance Role

- In addition to working closely with the CS&D Business Unit allocating funds and reporting on the many programs, the corresponding finance representative plays a key role toward each individual project by;
  - Creating & Closing the Work Breakout Structure (WBS#) which enables reporting functions via System Applications Program (SAP).

#### 3.5. Distribution Engineering Role & Requirements

- 3.5.1. All major customer service orders for Line Refurbishment are submitted to Distribution Engineering to ensure that the refurbished section of line will meet current design, standards, and loading requirements. The goal is to provide engineering with projects one year in advance to allow for work scheduling.
  - The project (e-form 2201) & supporting documents are forwarded to corresponding Distribution Engineering Section Head for an Engineered Design & RUCES Estimate. This information is also tracked in the access database & Capital Program Tracking Report
  - Distribution Engineering creates the "network" within SAP and appropriate work "activities", while corporate finance releases the "activities' as requests/approvals are submitted.

#### 3.5.2. Completed Distribution Design & RUCES Estimates

 The completed design drawings, RUCES estimate and approvals are forwarded to the DAM- Electric Program Coordinator via the "Customer Service Operations Order Release" <u>e-form 1914a</u>

### 4. Request for Construction

- Manitoba Hydro completes distribution construction using resources from Distribution Construction Department. Customer Service Operations Department or in some instances Contracted Services. The CSO coordinator had indicated on the original request who would be completing the work for each order. The DAM –Electric Program Coordinator ensures the work is forwarded and approved by the corresponding Department Manager
- 5. Measurements & Tracking
- On behalf of Business Support & Capital Asset Management Division Distribution Asset Management Department" is responsible to regularly report on projects within the Line Refurbishment program therefore;
  - Continuous cooperation, co-ordination and collaboration of stakeholders noted within this manual are essential.
  - Ongoing measurements and reporting will be supplied to our stakeholders in order for us to continuously improve upon the "Overhead Line Refurbishment Process"



<sup>&</sup>lt;sup>1</sup> <u>Distribution Asset Condition</u> ii Detailed Feeder Inspection Manual

#### A REPETITIVE MAINTENANCE TASKS

#### A1 Maintenance Task Template

| <b>Transformer - Power</b><br>Rated < 230 kV and < 50 MVA (max rating) plus all 3 phase regulators |              |           |           |           |  |  |  |  |  |  |  |  |  |
|----------------------------------------------------------------------------------------------------|--------------|-----------|-----------|-----------|--|--|--|--|--|--|--|--|--|
| Triggers                                                                                           |              |           |           |           |  |  |  |  |  |  |  |  |  |
| Tasks                                                                                              | Not Critical | Low       | Medium    | High      |  |  |  |  |  |  |  |  |  |
| Integrity Check                                                                                    | 12 months    | 12 months | 12 months | 12 months |  |  |  |  |  |  |  |  |  |
| DGA Oil Sample                                                                                     | 36 months    | 36 months | 36 months | 36 months |  |  |  |  |  |  |  |  |  |
| Standard Oil Sample                                                                                | 60 months    | 60 months | 60 months | 60 months |  |  |  |  |  |  |  |  |  |
| Maintenance Inspection         120 months         120 months         120 months         120 months |              |           |           |           |  |  |  |  |  |  |  |  |  |

|     |            | Removed tapchangers & grounding                                         |                   |                   |                |          |                           |
|-----|------------|-------------------------------------------------------------------------|-------------------|-------------------|----------------|----------|---------------------------|
| 10  | 2011 07 05 | classification rating from 138 kV to 230 kV<br>and 80 MVA to 50 MVA     | СМ                | GCD               |                | GV       |                           |
| 9   | 2005 06 03 | Change heading to read Rated ≤ 138 kV<br>from Rated less than 230kV.    | СМ                | JK                |                | DW       | Original signed by        |
| 8   | 2005 03 22 | Insulation check task merged into<br>Maintenance Inspection.            | СМ                | JK                |                | DW       | G. A. Verch<br>2011 07 13 |
| 7   | 2004 10 12 | Bushing tasks returned to template.                                     | СМ                | JK                |                | DW       |                           |
| 6   | 2004 03 11 | Added refer to bushing template detail for integrity check description. | СМ                | JK                |                | DW       |                           |
| No. | Date       | Revision                                                                | AMR<br>Specialist | Eq.<br>Specialist | Insul.<br>Eng. | AMR Eng. |                           |

#### PCSBAT01

# MAINTENANCE TASK TEMPLATE

|                                                                                                                                                                                                                                                             | Prote                               | ction and                                                                                           | Control System –                                                                                                                                                                                                                                                                | Battery                                                                                                                                                                                                                                                | Bai                                                                                              | nk S                          | tation/                    | Commu                               | nicatior                                                      | - Lead                             | Acid, V                             | ented(Flooded                         | d)                 |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|-----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-------------------------------|----------------------------|-------------------------------------|---------------------------------------------------------------|------------------------------------|-------------------------------------|---------------------------------------|--------------------|--|
|                                                                                                                                                                                                                                                             |                                     |                                                                                                     |                                                                                                                                                                                                                                                                                 | M                                                                                                                                                                                                                                                      | ainter                                                                                           | nance                         | Program                    | Section                             |                                                               |                                    |                                     |                                       |                    |  |
|                                                                                                                                                                                                                                                             |                                     |                                                                                                     |                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                        | Applicable                                                                                       |                               | vision                     |                                     |                                                               |                                    |                                     | Qualification                         | Total Task         |  |
|                                                                                                                                                                                                                                                             | Procedure/Task Name                 |                                                                                                     | ADMS File Name                                                                                                                                                                                                                                                                  | -                                                                                                                                                                                                                                                      | Gen<br>South                                                                                     |                               | HVDC                       | Freq                                | luency / Trigger                                              |                                    | Tolerance                           | Certified Power Electrician           | Hours              |  |
| Integrity Check – Battery Bank,<br>Station/Communication – Lead Acid                                                                                                                                                                                        |                                     | ery Bank,<br>n – Lead Acid                                                                          | 150.ps_Integ_Batt_Lead_Acid_proc.pd                                                                                                                                                                                                                                             | f                                                                                                                                                                                                                                                      | x                                                                                                | x                             | ×                          | 3 Months                            |                                                               |                                    | ±2 week                             | x                                     | 2                  |  |
|                                                                                                                                                                                                                                                             |                                     |                                                                                                     | 150.ps_Ohmic_Chk_Battery_Lead_Acid_proc.pdf                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                        |                                                                                                  | x                             | X Af                       | Installation                        |                                                               |                                    | N/A                                 |                                       |                    |  |
| Ohmie<br>Statio                                                                                                                                                                                                                                             | c Check - Battery<br>n/Communicatio | <sup>r</sup> Bank,<br>n – Lead Acid                                                                 |                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                        | х                                                                                                |                               |                            | fter Installation test<br>Engir     | on test approx. every 2 weeks pending<br>Engineering approval |                                    | N/A                                 | x                                     | 4                  |  |
|                                                                                                                                                                                                                                                             |                                     |                                                                                                     |                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                        |                                                                                                  |                               |                            |                                     | 1 Years                                                       |                                    | ±3 Months                           |                                       |                    |  |
| Specific Gravity Readings – Battery Bank,<br>Station/Communication – Lead Acid                                                                                                                                                                              |                                     | ngs – Battery Bank,<br>n – Lead Acid                                                                | 150.ps_Spec_Grav_Rdgs_Batt_Lead_                                                                                                                                                                                                                                                | Acid_proc.pdf                                                                                                                                                                                                                                          | х                                                                                                | х                             | х                          | 1 Years                             |                                                               |                                    | ±3 Months                           | x                                     | 4                  |  |
|                                                                                                                                                                                                                                                             |                                     |                                                                                                     |                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                        |                                                                                                  |                               |                            |                                     |                                                               |                                    |                                     |                                       |                    |  |
| Integrity Check – Battery, Room, Heating &<br>Ventilation – Lead Acid The Integrity Check is needed<br>batteries will remain in service<br>(NOTE: The interval between two se                                                                               |                                     |                                                                                                     | The Integrity Check is needed to ensur<br>batteries will remain in service during the<br>(NOTE: The interval between two sequential line)                                                                                                                                       | e the integrity of th<br>his check.<br>htegrity Check tasks sh                                                                                                                                                                                         | e compor<br>all not exce                                                                         | nents and l                   | pasic functions of         | the battery bank. T                 | This check is mainly                                          | v a visual inspectio               | n along with some f                 | unctional checks of associated eq     | uipment. The       |  |
| Ohmic Check - Battery – Lead Acid The C                                                                                                                                                                                                                     |                                     |                                                                                                     | The Ohmic Check is performed to mea<br>(NOTE: The interval between two sequential C                                                                                                                                                                                             | I he Uhmic Check is performed to measure the state of health of the battery bank and to identify whether testing (capacity testing) might be appropriate.<br>(NOTE: The interval between two sequential Ohmic Check tasks shall not exceed 18 months.) |                                                                                                  |                               |                            |                                     |                                                               |                                    |                                     |                                       |                    |  |
| Specific Gravity Readings – Battery – Lead Acid                                                                                                                                                                                                             |                                     |                                                                                                     | The Specific Gravity Check is performed to measure the state of charge of the battery bank and to identify whether remedial action (equalize charge) might be appropriate.<br>(NOTE: The interval between two sequential Specific Gravity Readings shall not exceed 18 months.) |                                                                                                                                                                                                                                                        |                                                                                                  |                               |                            |                                     |                                                               |                                    |                                     |                                       |                    |  |
| ***NOTE: In HVDC, the Ohmic Check tas                                                                                                                                                                                                                       |                                     |                                                                                                     |                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                        | and the Specific Gravity Readings task are both performed under the "Diagnostic Checks" task.*** |                               |                            |                                     |                                                               |                                    |                                     |                                       |                    |  |
|                                                                                                                                                                                                                                                             |                                     |                                                                                                     |                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                        | Tra                                                                                              | ck & <sup>·</sup>             | Trend Se                   | ction                               |                                                               |                                    |                                     |                                       |                    |  |
| Component Tracking                                                                                                                                                                                                                                          |                                     |                                                                                                     |                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                        |                                                                                                  | Da                            | tabase                     |                                     |                                                               | Test Package or Setting Letter     |                                     |                                       |                    |  |
| Battery Cell Water Consumption                                                                                                                                                                                                                              |                                     |                                                                                                     | n                                                                                                                                                                                                                                                                               | AMPS Ins                                                                                                                                                                                                                                               | nspection Readings 150.ps_Integ_Batt_Lead_Acid_cksh.pdf                                          |                               |                            |                                     |                                                               |                                    |                                     |                                       |                    |  |
| Batter                                                                                                                                                                                                                                                      | y Cell                              | Cell Voltage Resi                                                                                   | tance Readings and Specific Gravity Readir                                                                                                                                                                                                                                      | igs Alber Res                                                                                                                                                                                                                                          | istance T                                                                                        | ester File t                  | transferred to Am          | ps as CDF file                      | Application Guide                                             | for Battery Ohmic                  | Measurements Usin                   | ng the Alber CRT-400 Resistance       | Tester             |  |
|                                                                                                                                                                                                                                                             |                                     |                                                                                                     |                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                        | F                                                                                                | Revisi                        | ion Section                | on                                  |                                                               |                                    |                                     | I                                     |                    |  |
| A "NOTE" was added in the Task Summary section to<br>specify that the Diagnostic Checks performed in HVDC<br>2 2015-08-12 include the Ohmic Check and the Specific Gravity<br>Readings. This will allow demontration of compliance<br>through ODBC reports. |                                     |                                                                                                     | Christian<br>Gosselin                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                        |                                                                                                  |                               |                            |                                     |                                                               |                                    |                                     |                                       |                    |  |
| 1                                                                                                                                                                                                                                                           | 2015-02-11                          | A " <b>NOTE"</b> was adde<br>Check, the Ohmic Cl<br>to indicate the maxin<br>provides clarification | s Christian<br>Gosselin                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                        |                                                                                                  | Yuguang Xiao                  | )                          |                                     |                                                               |                                    |                                     |                                       |                    |  |
| 0                                                                                                                                                                                                                                                           | 2013-01-29                          | Changes to tasks an<br>development of stan<br>This task template si                                 | d frequency due to review and<br>lardized maintenance plan.<br>persedes SRCM decisions.                                                                                                                                                                                         | Brian Trumble<br>(no signature due to<br>retirement)                                                                                                                                                                                                   | y Kris<br>Y Trei                                                                                 | ty-Lee<br>mblay               | Yuguang Xiao               | Sadhna<br>Schipper                  | Alex<br>Muzyczka                                              | Wat Ngu                            | Kelvin Kent                         |                                       |                    |  |
| No                                                                                                                                                                                                                                                          | Date<br>(YYYY-MM-DD)                | Date<br>YY-MM-DD) Revision Reason and Reference                                                     |                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                        | Gene<br>Maint<br>Engir                                                                           | eration<br>tenance<br>neering | Generation<br>NERC Project | HVDC NERC<br>Compliance<br>Engineer | Technical<br>Services<br>Electrical                           | Technical<br>Services R&P<br>Group | HVDC Mtce<br>Performance<br>Section | Wendelin E. Schuhr<br>Original signed | mann<br><b>by:</b> |  |

PCSBAT01

MASTER Maintenance Task Template

#### PCSBAT02

# MAINTENANCE TASK TEMPLATE

|                                                                              | Protection and Control System – Battery Bank Station/Communication - Lead Acid, Valve Regulated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                           |                                                                                                        |                                                       |                                                                                                  |                              |                               |                                                                               |                                     |                                    |                                                          |                                         |                    |  |  |
|------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------------------------------------------------|------------------------------|-------------------------------|-------------------------------------------------------------------------------|-------------------------------------|------------------------------------|----------------------------------------------------------|-----------------------------------------|--------------------|--|--|
|                                                                              | Maintenance Program Section                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                           |                                                                                                        |                                                       |                                                                                                  |                              |                               |                                                                               |                                     |                                    |                                                          |                                         |                    |  |  |
|                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                           |                                                                                                        |                                                       | Applicable Division                                                                              |                              |                               |                                                                               |                                     |                                    | Qualification                                            | Total                                   |                    |  |  |
| Procedure/Task Name                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ask Name                                                                                                                                                  | ADMS File Name                                                                                         |                                                       | Gen Gen HVDC                                                                                     |                              | Frequency / Trigger           |                                                                               | Tolerance                           | Certified Power Electrician        | Task<br>Hours                                            |                                         |                    |  |  |
| Integrity Check – Battery Bank, 150.ps.<br>Station/Communication – Lead Acid |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                           | 150.ps_Integ_Batt_Lead_Acid_proc.p                                                                     | df                                                    | x                                                                                                |                              |                               | 3 Months                                                                      |                                     |                                    | ±2 week                                                  | x                                       | 2                  |  |  |
|                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                           |                                                                                                        |                                                       |                                                                                                  |                              |                               |                                                                               | Installation                        |                                    | N/A                                                      | _                                       |                    |  |  |
| Ohmic Check - Battery Bank,<br>Station/Communication – Lead Acid             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                           | 150.ps_Ohmic_Chk_Battery_Lead_Acid_proc.pdf                                                            |                                                       | х                                                                                                |                              | A                             | After Installation test approx. every 2 weeks pending<br>Engineering approval |                                     | N/A                                | х                                                        | 4                                       |                    |  |  |
|                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                           |                                                                                                        |                                                       |                                                                                                  |                              |                               |                                                                               | 1 Years                             |                                    | ±3 Months                                                | ]                                       |                    |  |  |
| Integ<br>Vent<br>Ohm                                                         | Procedure/Task Summary         Integrity Check - Battery, Room, Heating & Ventilation - Lead Acid       The Integrity Check is needed to ensure the integrity of the components and basic functions of the battery bank. This check is mainly a visual inspection along with some functional checks of associated equipment. The batteries will remain in service during this check.         (NOTE: The interval between two sequencial Integrity Check tasks shall not exceed 4 months.)         Ohmic Check - Battery - Lead Acid       The Ohmic Check is performed to measure the state of health of the battery bank and to identify whether testing (capacity testing) might be appropriate.         (NOTE: The interval between two sequencial Ohmic Check tasks shall not exceed 18 months.) |                                                                                                                                                           |                                                                                                        |                                                       |                                                                                                  |                              |                               |                                                                               |                                     |                                    |                                                          |                                         |                    |  |  |
| Component                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                           | Tracking                                                                                               |                                                       | Database                                                                                         |                              |                               |                                                                               |                                     | Test Package or Setting Letter     |                                                          |                                         |                    |  |  |
| Battery Cell Cell Voltage Resi                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Cell Voltage Resis                                                                                                                                        | tance Readings                                                                                         | Alber Resi                                            | Alber Resistance Tester File transferred to Amps as CDF file Application Guide for Battery Ohmic |                              |                               |                                                                               |                                     |                                    | c Measurements Using the Alber CRT-400 Resistance Tester |                                         |                    |  |  |
|                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                           |                                                                                                        |                                                       |                                                                                                  |                              |                               |                                                                               |                                     |                                    |                                                          |                                         |                    |  |  |
|                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                           |                                                                                                        |                                                       | F                                                                                                | Revisi                       | on Sectio                     | on                                                                            |                                     |                                    |                                                          |                                         |                    |  |  |
| A " <b>NOTE</b> " was added in the Task Summary of the                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                           |                                                                                                        |                                                       |                                                                                                  |                              |                               |                                                                               |                                     |                                    |                                                          |                                         |                    |  |  |
| 1                                                                            | 2015-02-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Integrity Check and the Ohmic Check to indicate<br>the maximum interval between tasks. This<br>provides clarification to meet NERC Standard PRC<br>005-2. |                                                                                                        | Christian<br>Gosselin                                 |                                                                                                  |                              | Yuguang<br>Xiao               |                                                                               |                                     |                                    |                                                          |                                         |                    |  |  |
| 0                                                                            | 2013-01-29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Changes to task<br>development of<br>This task temple                                                                                                     | ks and frequency due to review and<br>standardized maintenance plan.<br>ate supersedes SRCM decisions. | Brian Trumbley<br>(no signature due to<br>retirement) | Krist<br>Trer                                                                                    | ty-Lee<br>mblay              | Yuguang<br>Xiao               | Sadhna<br>Schipper                                                            | Alex<br>Muzyczka                    | Wat Ngu                            | Kelvin Kent                                              |                                         |                    |  |  |
| No                                                                           | Date<br>(YYYY-MM-DD)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Revis                                                                                                                                                     | ion Reason and Reference                                                                               | RCM Section                                           | Gene<br>Maint<br>Engir                                                                           | eration<br>enance<br>neering | Generation<br>NERC<br>Project | HVDC<br>NERC<br>Complianc<br>e Engineer                                       | Technical<br>Services<br>Electrical | Technical<br>Services<br>R&P Group | HVDC Mtce<br>Performance<br>Section                      | Wendelin E. Schuhm<br>Original signed I | nann<br><b>by:</b> |  |  |